
Challenges in Learning from Behaviour

David Aspinall

Prof. Software Safety and Security, University of Edinburgh.

With thanks to Henry Clausen, Robert Flood and others

AI-CyberSec 2021

• From software behaviour to network behaviour

• Challenges
1. collecting and sharing the data
2. ensuring sufficient variety
3. understanding model performance

• Outlook for future work

Outline

Learning Malware Behaviour

Predicting the Security Behaviour of Mobile Apps. UoE, 2017-20.
App Guarden: Secure App Stores. UoE, 2014-17.

• Program analysis extracts behaviour
• Learn common bad patterns
• Train a classifier to recognise
• Robust against diversification,

obfuscation.

Intuition:

If it behaves like a bad app,
it is a bad app!

Abstract Behaviours of a Flashlight App

Map out all things an app can do,
approximately. Certain behaviour
patterns considered bad by
“policies” (rules).

Question: could we do this by
external observations of activity,
without looking at program code
at all?

Perhaps even from network
traces?!

Our idea set out towards Network Intrusion Detection systems (NIDS):

1. gather interpretable external behaviours (network traces, log files)
2. learn interaction protocols (language grammars)
3. build approximate behaviours to construct software models
4. generate policies and rules to detect rogue behaviours

We’re still on the first step of this roadmap...

Detection by Learning Software Models (2019-)

On the face of it, anomaly detection or traffic classification seem straightforward:

• train an Artificial Intelligence to recognise normal (and bad) behaviours
• raise alarms if suspicious (or known bad) behaviours appear

Despite almost three decades of research, fundamental challenges remain, e.g.:

• volume and diversity of normal behaviours + vanishingly small #s bad cases
• rapid change in data baselines + and few up-to-date public datasets
• lack of accurate ground truth + unclear benchmarks, few longitudinal evaluations

Data-driven Intrusion Detection

See: Outside the Closed World: On Using Machine Learning for Network
Intrusion Detection. Sommer and Paxson, IEEE S&P 2010.

Promise of AI in Security

Challenge 1.
Collecting and Sharing Data

It’s the
data,

stupid!

We must have high-quality open datasets to advance the field as other domains
have enjoyed. But:

• Tedious to collect and curate
• Real data is fraught with PII and security risk, needs anonymisation
• Synthetic data has issues: insufficient variety, accuracy other risks.

Consider the incentives behind data release...

Collecting and sharing data

DetGen: A Synthetic Data Tool

Idea: isolate single app behaviour.

Features:

• scripted interaction scenarios

• provide built-in ground truth labels

Achieves, to an extent:

Deterministic data Generation.

Evaluation: comparing against a Virtual Machine setting

In VM we see greater spread of IATs. These side-effects of simulation are not inherent in HTTP
software tested. So would like to minimise/remove them, try to ensure detection models are robust.

Evaluation: measuring determinism of DetGen

Exact determinism isn’t possible but DetGen achieves greater reproducibility (less variation) compared
to a simplified VM setting. Real networks or complex VMs would show much higher variation.

Evaluation: calibrating with real-world captures

A simple experiment shows that we should be able to re-calibrate or simulate
real-world behaviours by manipulating the captures to insert delays.

Challenge 2:
Ensuring Variety of Data

In general, we want flexible ways to generate enough variety in data.

For example:
• to compare different software versions
• to mix data together (combining, injecting attacks)
• to generate data that wasn’t there

We want to understand various factors that need to be controlled for data
generation and capture: “influence factors”.

Ensuring Variety of Data

Microstructures in traffic

A “microstructure” is a short-term
structure corresponding to a
particular activity, manifested by
characteristic sequences at packet or
connection level.

State-of-the-art IDS models use these
to fingerprint or detect anomalous
behaviour.

For robust models, we need robust
microstructure notions.

Example microstructure for HTTP-get request, showing
common characteristic structure

Factors influencing traffic and potential microstructures

There are many! For example:

• Application/task
• Implementation and version of
• Network congestion
• Host load
• Caching/repetition variation
• Background traffic

Factors influencing traffic and potential microstructures

From Marx et al, Same Standards, Different Decisions: A Study
of QUIC and HTTP/3 Implementation Diversity, EPIQ 2020.

There are many! For example:

• Application/task
• Implementation and version of
• Network congestion
• Host load
• Caching/repetition variation
• Background traffic

Factors influencing traffic and potential microstructures

There are many! For example:

• Application/task
• Implementation and version of
• Network congestion
• Host load
• Caching/repetition variation
• Background traffic

Factors influencing traffic and potential microstructures

There are many! For example:

• Application/task
• Implementation and version of
• Network congestion
• Host load
• Caching/repetition variation
• Background traffic

DetGen: Controlling variations

To handle data variation, we

extend DetGen:

• simulate external factors

• parameterise scripts

• randomise at every stage

Problem: no public datasets, existing
work used own datasets, incomparable
and overly simple.

Solution: generate independent dataset
with Detgen, injecting chaff and jitter
(Netcat, NetEm).
Compare competing methods on same
basis.

SSH-Tunnel 1

22

22

𝑂

𝑆!

𝑆"

SS
H-Tu

nn
el

2

22

22

…

Forwarded
ports

SSH-daemon

SSH-daemon SSH-daemon

Server

…
Virtual network in Docker

Application: Evaluating stepping-stone detection methods

0.00

0.25

0.50

0.75

1.00

0 10 30 50 100 200 300 500
ratio of chaff in %

TP
 ra

te

Method
PCorr

DeepL1

DeepL2

RTT1

RTT2

Ano1

Ano2

WM

Detection rates for chaff dataset CA

Challenge 3:
Understanding Model Performance

Machine Learning model development process

Evaluation

Probing

Understanding
model failures

Model
(re)design

Problem
formulation

Famous advances

• Ambiguity in translation

• Attention layer

• CNNs biased to texture

• Image stylization

• Video enhancement

• Multi-scale encoders

Machine Learning model development process in NID

Evaluation

Probing

Understanding
model failures

Model designProblem
formulation

Existing NID datasets are:

• Difficult to read/interpret

• Sparsely/poorly labelled

• Non-malleable

Model evaluation vs probing

Probing example: SQLi attacks hidden in congestion

Take a state-of-the-art LSTM
packet stream classifier (Hwang
et al, 2019).

Train on original dataset and
similar Detgen labelled traffic.

Probing the model with
randomized labelled traffic shows
that it makes mistakes under
higher congestion!

Understanding and repairing the error

Test hypothesis: generate two
identical SQLi connections, one
with high latency.

Second causes retransmissions
and model misclassification!

Pre-processing the data
improves model.

Outlook and Future Work

Revisiting NIDS datasets: data science forensics

Examining some popular existing datasets in detail we find:

• Simulation artifacts cause short-cut learning e.g., OS-specific TTL values
• Whole classes of failed attacks, simplify classification massively
• Low overlap between malicious and benign traffic flow statistics
• Heavy reliance on pen-testing tools results in narrowly distributed features –

unrealistic baselines for real-world attacks
These datasets have been used for dozens (sometimes hundreds) of research
papers.

Example: comparing synthetic with real traffic

Synthetic data is invaluable, but real-world open datasets are essential

In recent work with the Alan Turing Institute we have begun investigating the
design and effectiveness of anonymisation mechanisms:

• organisational privacy and PII: use of anonymisation functions or PETs

• utility for data analysis: retaining ability to train classifiers or trigger rules

Need for anonymisation

Data-driven vulnerabilities: adversarial examples and more

Intentional failures Unintentional failures

Perturbation attack Physical adversarial examples Reward hacking

Poisoning attack Training data recovery RL environment side effects

Model inversion Model supply chain attack Concept drift/shift

Membership inference Trojaned model Natural adversarial examples

Model stealing Software exploit confusion Common corruption

Reprogramming Incomplete testing

See Microsoft’s methods for Threat Modeling AI/ML Systems and Dependencies at
https://docs.microsoft.com/en-us/security/failure-modes-in-machine-learning

https://docs.microsoft.com/en-us/security/failure-modes-in-machine-learning

We set out to construct “software models” from outside the software, using
data from network captures. Existing datasets were not precise enough,
inspiring DetGen.

Having a precise synthetic data tool supported new NIDS contributions:
• better models for detecting small-signal access attacks

• new datasets with ground truth to defeat stepping stone detection
• ways to probe state-of-the-art model failures to improve attack detection

For papers and tools, please visit https://detlearsom.github.io/

Summary

https://detlearsom.github.io/

Acknowledgements

Work: Henry Clausen, Robert Flood, Mark Sabaté, Gudmund Grov, Michael Gibson.
Credits: Wei Chen, Alex Healing, Nikola Pavlov, Chenghao Ye, Gints Engelen.
Funders: Alan Turing Institute, EPSRC, BT Labs, UoE EPCC and Informatics.

For papers and tools, please visit https://detlearsom.github.io/

https://detlearsom.github.io/

