Challenges in Learning from Behaviour

David Aspinali
Prof. Software Safety and Security, University of Edinburgh.
With thanks to Henry Clausen, Robert Flood and others
Al-CyberSec 2021

Outline

 From software behaviour to network behaviour

* Challenges
1. collecting and sharing the data
2. ensuring sufficient variety
3. understanding model performance

e Outlook for future work

Learning Malware Behaviour / identified behaviourJ

malware abstract

explainable general
behavioural
patterns

Y

=N

* Program analysis extracts behaviour
* Learn common bad patterns

* Train a classifier to recognise

* Robust against diversification,

obfuscation. / Sanatures /L,[maiware J“_/ t:‘ri:t /

Intuition: l
Yes/No

unexplainable
singular features

If it behaves like a bad app,

it is a bad app! Predicting the Security Behaviour of Mobile Apps. UoE, 2017-20.
App Guarden: Secure App Stores. UoE, 2014-17.

Abstract Behaviours of a Flashlight App

Map out all things an app can do,
approximately. Certain behaviour
patterns considered bad by
“policies” (rules).

N

Question: could we do this by
external observations of activity,
without looking at program code
at all?

Perhaps even from network
traces?!

_ \(elea&e.nConnecuon

leasesnGonnectiony

- -'j?—%‘if)@pepﬁgn";e‘@mﬂavhackwLocatlon

=7 1opg|aybg’5knnecuo phreleasesnConnection ocation

iODEstopPlagetLastKnown'L'b’ ationetion

ZStop ?elL“astKnow ocatnomConnecuon

_e'sge'l‘lﬁqs KAOWN e“,’hcggc%?cuonanon

PO _ OpRIa :

ack kcel &%ff(ﬁ)ﬁgaybacka%rt‘KnownLocamn
9 o F@etLastKnownLocauon

taetllastKnownLocation

S q >
reque:equeleocauonUpdgle estlla \lgpen
Uire)pRlays,

equestLoopemUmslart,queSu_c?‘. acauire Sl
X%m‘ .\aq Hﬁ* ?‘?‘a%gfeﬁ%engonsgﬁaay%%em

e S ."-".,--L‘.,J*.ié‘ﬁs g

S

call S

etV deoUﬂ }levaggé.gc% 6pe£!inj..,

{ h
‘Aehc i graetA q
3 .1' oA gg',\gd o

MAIN

Cancel

Click

0, XE
/ \getActlveNetworkl nfo
NetwarkInfodatw Jopenonnection
1A

ctiveNetopentirtiiection
mmﬁxecui ection Uiy
e\e ooenf‘onnectlon

N
openConnection-

&

getActiveNetworkinfo
getActiveNetworkinfo

getLastkKnownLocation
requestLocauonUp&:}es

requessLocauonUpdates
¥ fgetActiveNetworkinfo
openConnection

openConnection
openConnection

<

Detection by Learning Software Models (2019-)

Our idea set out towards Network Intrusion Detection systems (NIDS):

gather interpretable external behaviours (network traces, log files)
learn interaction protocols (language grammars)

build approximate behaviours to construct software models

W

generate policies and rules to detect rogue behaviours

We're still on the first step of this roadmap...

Data-driven Intrusion Detection

On the face of it, anomaly detection or traffic classification seem straightforward:

* train an Artificial Intelligence to recognise normal (and bad) behaviours

* raise alarms if suspicious (or known bad) behaviours appear

Despite almost three decades of research, fundamental challenges remain, e.g.:

* volume and diversity of normal behaviours + vanishingly small #s bad cases
* rapid change in data baselines + and few up-to-date public datasets

* lack of accurate ground truth + unclear benchmarks, few longitudinal evaluations

See: Outside the Closed World: On Using Machine Learning for Network
Intrusion Detection. Sommer and Paxson, |IEEE S&P 2010.

Promise of Al in Security

» |National Cyber @

Securlty C eﬂtl’e ABOUT NCSC CisP REPORT AN INCIDENT CONTACT US

Home Informationfor.. Advice & guidance Education &skills Products & services ~ News, blogs, events...

@& Home » Intelligent security tools

©® FAVORABLE REVIEW

5.0 December 6, 2021

Superb tool to monitor and protect your IT and/or OT environment

Very skilled staff and commited sales; they work perfectly together and give you a clear overview of the
possibilities of the product. The software checks a lot of breach modules, but chooses the ones which are
important, so that you are not overwhelmed by a lot of notifications; you don't have to spend hours and hours of
time to solve the breaches, because the built-in Al only displays the most important ones.

Read Full Review

® CRITICAL REVIEW

2.0 January 8, 2021
Jealous on their marketing budget. Technical capabilities are limited.

A lot of fluffy marketing with many promises of the capabilities of this product. But after connecting "the black
miracle box" to the network, it produced a extensive amount of benign alerts (many "maybe you should look into
this") but hardly any solid actionable information. This product might be useful in a small simple environment
with a flat network architecture. However in a complex organisation the solution will become very expensive
and labour intensive.

Read Full Review

Intelligent security tools

Assessing intelligent tools for cyber security

IN THIS GUIDANCE

Intelligent security
tools

Defining artificial
intelligence

Establishing the need
Dealing with data

Available skills and
resources

Getting the most from
artificial intelligence

PUBLISHED
18 April 2019

REVIEWED

18 April 2019

VERSION
10

Introduction

Artificial Intelligence (Al) is fast becoming the 'next big thing' in security. There are a
huge number of 'intelligent’ tools coming to market, each one promising to solve
problems better and faster than traditional approaches.

Challenge 1.
Collecting and Sharing Data

Collecting and sharing data

We must have high-quality open datasets to advance the field as other domains
have enjoyed. But:

* Tedious to collect and curate
* Real data is fraught with PIl and security risk, needs anonymisation

* Synthetic data has issues: insufficient variety, accuracy other risks.

Consider the incentives behind data release...

DetGen: A Synthetic Data Tool

docker

Idea: isolate single app behaviour.

Virtual network in Docker

Features:

Container 1 i | Container 2

e scripted interaction scenarios

etho i 1706 I

e provide built-in ground truth labels

Virtual switch

—
4—
I
]

I

Achieves, to an extent:

Deterministic data Generation. Y it

Evaluation: comparing against a Virtual Machine setting

DetGen - HTTP connection comparison Regular HTTP connection comparison
Sample 1 | | B I B * | Sample 1 [l | (] ll [I |
——————————————————— g e e e e e] B — e s o o o = . —lg
Sample2 0 | | | * | 2 | pample 2 (] 0] I nn | [2
———————————————————— = S e e R e e e e e e =
Sample3 0 0 | | * 0 Sample3 0 |l i I B0 I (|
Sample 18 0 0 0 l (] | [] Sample 11 11 (| i ‘ [| Il]
___________________ e el e e Ty Ea e i R R
Sample 21 a o B 0m] 2 | pample2l 1 * [| i 0 1|2
____________________ =4 I S S PR -
sample3l 8 1 il §ou 0 Sample 31 { [il |+ 1

0A0|00 OAO'OS 0A0'10 0A0l15 OA[')O OAEJ1 0.62

Time [ms] Time [s]

Flag [ackn. [Finsackn. [l Pushiackn. [l s [T syniackn.

In VM we see greater spread of IATs. These side-effects of simulation are not inherent in HTTP
software tested. So would like to minimise/remove them, try to ensure detection models are robust.

Evaluation: measuring determinism of DetGen

DetGen VM
HTTP F-Sync C&C HTTP F-Sync C&C
4. 0 - 4.0000 1 T
-‘f:_? e il i ? 3 1
(4] 1!
5 050007 i _ : 050001 * o I _
X | f ? |
I .. |

- @] IR
"‘6 _' ;E(® :; ®
-2 0.06251 & " i | 0.0625 1 o
i} : i ’

Metric * Conn.similarity ® Conn.sequence similarity ® Packet sequence similarity

Exact determinism isn’t possible but DetGen achieves greater reproducibility (less variation) compared
to a simplified VM setting. Real networks or complex VMs would show much higher variation.

Evaluation: calibrating with real-world captures

L | Machin : Random Forest Results
S OcCal Mac eTc_Netem. Local Machine Google Compute Instance s Normal - p = 60 i, Pareto - u = 60
veth FTP-client delay normal 50ms 10ms veth VSFTPD delay normal 50ms 10ms ..I] l
.=.!. HENEE tcpdump tcpdump EEEEE T 07 0.7 1
L tcpdump tcpdump FTP-client] VSFTPD g
FTP-client VSFTPD § 061 06 4
: FTP-client VSFTPD
FTP-client VSFTPD ENV: 8§5R=89asgizas - ENV USER=89asdjas 05 T = T 05 5 = P
- ENV: USER=a48thwdif % :) - ENV PASS=ewqu32
{ - ENV USER=a48thwdif - VOLUME: dataToSh .
- ENV. PASSwminrvie N v Pascorikanne T e - VOLUME: dataToshare Paretonormal - = 50 Weibull - 1 = 60
s : dataToShare - VOLUME: dataToShare - IPv4: 172.17.0.2 - ————— - VOLUME: 89asdjas 08 08
- VOLUME: recieve VOLUME: a48thwdif i e - IPv4: 10.2.123.4
- IPv4: 172.17.0.2 e) ; !
- IPv4: 172.17.0.5 COMMAND: ftp -n 10.2.123.4 -
COMMAND: ftp -n 172.17.0.5 get $FILE COMMAND: vsftpd g 0.7 0.7 1
get SFILE COMMAND: vsftpd g
g 06 06
05 T T 05 T T
10 20 10 20
Jitter (ms) Jitter (ms)

A simple experiment shows that we should be able to re-calibrate or simulate
real-world behaviours by manipulating the captures to insert delays.

Challenge 2:
Ensuring Variety of Data

Ensuring Variety of Data

In general, we want flexible ways to generate enough variety in data.

For example:
* to compare different software versions
* to mix data together (combining, injecting attacks)

* to generate data that wasn’t there

We want to understand various factors that need to be controlled for data
generation and capture: “influence factors”.

Microstructures in traffic

A “microstructure” is a short-term
structure corresponding to a
particular activity, manifested by
characteristic sequences at packet or
connection level.

State-of-the-art IDS models use these
to fingerprint or detect anomalous
behaviour.

For robust models, we need robust
microstructure notions.

Sample 1 | 0 0 l 0 EI 0

——————————————————— g

Sample2 0 0 0 0 EI 0 %

———————————————————— 2 | Flag

Sample3 0 I 0 0 EI 0 [:, A
T Fa
B Pa

Sample 11 0 0 0 l il ol 0 | E

___________________ o [sa

Sample 2 0 1] B | 0o 0 2

Sample 38 0 11} i B B 0

0.000 0.005 0.010 0.015
Time [ms]

Example microstructure for HTTP-get request, showing
common characteristic structure

Factors influencing traffic and potential microstructures

There are many! For example:

* Application/task

* Implementation and version of
* Network congestion

* Host load

e Caching/repetition variation

* Background traffic

Factors influencing traffic and potential microstructures

There are many! For example:

* Application/task

* Implementation and version of
 Network congestion

* Host load

e Caching/repetition variation

e Background traffic

Request order: D1 I 2 l 3 I 4 I:I 5 I 6 D 74 I 8 . 9 D 10 pg Retransmit

aioquic Round-Robin per packet RA 1

HﬂlllﬂlﬂllllmlllllllllllllﬂlIIIIIIIIIIIIIIIIIIIIIIIMIIIBIIHIIIIIIIlﬂllllll]lllllllﬂlllﬁlllll‘lllllll

quiche Round-Robin per packet RA 1
-II_—-II-IIIIIII-IHIIHWIII]|I|l||I|H||I||||-IlHl

google Round-Robin per 14 packets RA 2
IIIIIIIIIIIIIIIIIIIIII[IIllIIIIIIIIlIIIIIIIIIIIIIIII|II|IIIIIIIIIIIIIIIIIIIIIIIIIIIlIIIIIIIIIIIIIIlIIIIlII
[squic Round-Robin per congestion window RA 2
UTTETIE o Do) O O P R O R Rt R

RIS | | 1
ats Sequential in LIFO order RA 2

From Marx et al, Same Standards, Different Decisions: A Study

of QUIC and HTTP/3 Implementation Diversity, EPIQ 2020.

Factors influencing traffic and potential microstructures

There are many! For example:

* Application/task

* Implementation and version of
 Network congestion

* Host load

e Caching/repetition variation

e Background traffic

FTP-connection comparison under load

AR

0.03
Time [s]

Flag] A [Pa [s [T] 4

Factors influencing traffic and potential microstructures

There are many! For example:

* Application/task

* Implementation and version of
* Network congestion

* Host load

e Caching/repetition variation

e Background traffic

Time

Source-1P

Destination-1P

Dest. Port

13:45:56.8

192.168.10.9

192.168.10.50

21

13:45:56.9

192.168.10.9

192.168.10.50

10602

s USSR

192.168.10.9

69.168.97.166

443

13:45:59.1

192.168.10.9

192.168.10.3

53

13:46:00.1

192.168.10.9

205.174.165.73

8080

DetGen: Controlling variations

Host

To handle data variation, we C HTTP scenario) [Scenario
Apache NGinx execﬁjtlon
extend DetGen: Container container l script
1 1
(Task (GET, PUSH, ...))<—|
1 | |
(Data (file, commands a
* simulate external factors (Rep cookles caching, ..))4_
* parameterise scripts 1
P P (Host effects (load, memory)4—
 randomise at every stage l I l
Network (loss, congestion,...))4—
Labelling with log info

V

Capture

Application: Evaluating stepping-stone detection methods

) o Virtual network in Docker
Problem: no public datasets, existing = = = o s

E SSH-daemon SSH-daemon

work used own datasets, incomparable To o <
and overly simple. | J o[22

=
Solution: generate independent dataset | S,

with Detgen, injecting chaff and jitter T samemon] L cerver |
(N Etcat) N et E m) . Detection rates for chaff dataset CA

Compare competing methods on same I oo
basis. — s

Challenge 3:

Understanding Model Performance

Machine Learning model development process

Famous advances

Evaluation * Ambiguity in translation

\ * Attention layer

e CNNs biased to texture

/

Model
(re)design

v

Probing

Problem
formulation

* Image stylization

/ * Video enhancement

UG G ERE e e Multi-scale encoders
model failures

Machine Learning model development process in NID

Existing NID datasets are:
Evaluation
\ * Difficult to read/interpret

 Sparsely/poorly labelled

* Non-malleable

Problem Sl Model design
formulation

Model evaluation vs probing

Data samples

Evaluation

Prediction

\

Accuracy: 95%

Prediction

N
e

o 4----

Probing example: SQLi attacks hidden in congestion

LSTM-model activity classification

Take a state-of-the-art LSTM
packet stream classifier (Hwang 1.001
et al, 2019).

Pre-correction

0.75 1

Train on original dataset and
similar Detgen labelled traffic.

Classification score
o o
[)
()] o

Probing the model with

0.00 1

randomized labelled traffic shows 005 010 0.15 0.20
. . Simulated congestion RTT-delay [s]
that it makes mistakes under
higher Congestion! Activity == HTTP streaming == Multi-GET-request = Simple GET-request

=== Keep-alive === Post-request === SQL-Injection

Understanding and repairing the error

LSTM-model activity classification

Pre-correction Post-correction

Test hypothesis: generate two
identical SQLi connections, one
with high latency.

1.00 A

o
S 0.75
. [m
Second causes retransmissions S
. .o . © 0.50
and model misclassification! 2
w
EO.QS-
O

Pre-processing the data
0.00 A

improves model. 0% 010 045 050 005 010 015 039
Simulated congestion RTT-delay [s]

= HTTP streaming === Multi-GET-request === Simple GET-request
Activity

= Keep-alive === Post-request === SQL-Injection

Outlook and Future Work

Revisiting NIDS datasets: data science forensics

Examining some popular existing datasets in detail we find:

* Simulation artifacts cause short-cut learning e.g., OS-specific TTL values
* Whole classes of failed attacks, simplify classification massively
* Low overlap between malicious and benign traffic flow statistics

* Heavy reliance on pen-testing tools results in narrowly distributed features —
unrealistic baselines for real-world attacks

These datasets have been used for dozens (sometimes hundreds) of research
papers.

Example: comparing synthetic with real traffic

le—8 Flow Duration Total Fwd Packet
71 —— Windows10-64B_Gints —— Windows10-64B_Gints
Ubuntu64B_Gints 0.08 1 Ubuntu64B_Gints
6 - —— Windows10-64B_CICIDS —— Windows10-64B_CICIDS
—— Ubuntu64B_CICIDS —— Ubuntu64B_CICIDS
=N 0.06 -
247 >
= b
c 7]
c
a3 0.04-
2 .
0.02 -
1 .
01 | | | | _ 0.00 -

—0. 0.0 0.5 1.0 1.5 —100000 0 100000 200000 300000

1e8

Need for anonymisation

Synthetic data is invaluable, but real-world open datasets are essential

In recent work with the Alan Turing Institute we have begun investigating the
design and effectiveness of anonymisation mechanisms:

e organisational privacy and PIl: use of anonymisation functions or PETs

* utility for data analysis: retaining ability to train classifiers or trigger rules

Data-driven vulnerabilities: adversarial examples and more

Intentional failures _ Unintentional failures

Perturbation attack Physical adversarial examples Reward hacking

Poisoning attack Training data recovery RL environment side effects
Model inversion Model supply chain attack Concept drift/shift
Membership inference Trojaned model Natural adversarial examples
Model stealing Software exploit confusion Common corruption
Reprogramming Incomplete testing

See Microsoft’s methods for Threat Modeling Al/ML Systems and Dependencies at
https://docs.microsoft.com/en-us/security/failure-modes-in-machine-learning

https://docs.microsoft.com/en-us/security/failure-modes-in-machine-learning

Summary

We set out to construct “software models” from outside the software, using
data from network captures. Existing datasets were not precise enough,
inspiring DetGen.

Having a precise synthetic data tool supported new NIDS contributions:
* better models for detecting small-signal access attacks
* new datasets with ground truth to defeat stepping stone detection

* ways to probe state-of-the-art model failures to improve attack detection

For papers and tools, please visit https://detlearsom.github.io/

https://detlearsom.github.io/

Acknowledgements

Work: Henry Clausen, Robert Flood, Mark Sabaté, Gudmund Grov, Michael Gibson.
Credits: Wei Chen, Alex Healing, Nikola Pavlov, Chenghao Ye, Gints Engelen.
Funders: Alan Turing Institute, EPSRC, BT Labs, UoE EPCC and Informatics.

For papers and tools, please visit https://detlearsom.github.io/

3 @ EDINBURGH
. THE UNIVERSITY of EDINBURGH &\vj/»g;gggggcg&g
e’ I

NSTITUTE

https://detlearsom.github.io/

