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Outline

 From software behaviour to network behaviour

* Challenges
1. collecting and sharing the data
2. ensuring sufficient variety
3. understanding model performance

e Outlook for future work
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Abstract Behaviours of a Flashlight App

Map out all things an app can do,
approximately. Certain behaviour
patterns considered bad by
“policies” (rules).

N

Question: could we do this by
external observations of activity,
without looking at program code
at all?

Perhaps even from network
traces?!
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Detection by Learning Software Models (2019-)

Our idea set out towards Network Intrusion Detection systems (NIDS):

gather interpretable external behaviours (network traces, log files)
learn interaction protocols (language grammars)

build approximate behaviours to construct software models

W

generate policies and rules to detect rogue behaviours

We're still on the first step of this roadmap...



Data-driven Intrusion Detection

On the face of it, anomaly detection or traffic classification seem straightforward:

* train an Artificial Intelligence to recognise normal (and bad) behaviours

* raise alarms if suspicious (or known bad) behaviours appear

Despite almost three decades of research, fundamental challenges remain, e.g.:

* volume and diversity of normal behaviours + vanishingly small #s bad cases
* rapid change in data baselines + and few up-to-date public datasets

* lack of accurate ground truth + unclear benchmarks, few longitudinal evaluations

See: Outside the Closed World: On Using Machine Learning for Network
Intrusion Detection. Sommer and Paxson, |IEEE S&P 2010.



Promise of Al in Security
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Introduction

Artificial Intelligence (Al) is fast becoming the 'next big thing' in security. There are a
huge number of 'intelligent’ tools coming to market, each one promising to solve
problems better and faster than traditional approaches.



Challenge 1.
Collecting and Sharing Data




Collecting and sharing data

We must have high-quality open datasets to advance the field as other domains
have enjoyed. But:

* Tedious to collect and curate
* Real data is fraught with PIl and security risk, needs anonymisation

* Synthetic data has issues: insufficient variety, accuracy other risks.

Consider the incentives behind data release...



DetGen: A Synthetic Data Tool

docker

Idea: isolate single app behaviour.

Virtual network in Docker

Features:

Container 1 i | Container 2

e scripted interaction scenarios
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Evaluation: comparing against a Virtual Machine setting

DetGen - HTTP connection comparison Regular HTTP connection comparison
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In VM we see greater spread of IATs. These side-effects of simulation are not inherent in HTTP
software tested. So would like to minimise/remove them, try to ensure detection models are robust.



Evaluation: measuring determinism of DetGen

DetGen VM
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Exact determinism isn’t possible but DetGen achieves greater reproducibility (less variation) compared
to a simplified VM setting. Real networks or complex VMs would show much higher variation.



Evaluation: calibrating with real-world captures

L | Machin : Random Forest Results
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A simple experiment shows that we should be able to re-calibrate or simulate
real-world behaviours by manipulating the captures to insert delays.



Challenge 2:
Ensuring Variety of Data



Ensuring Variety of Data

In general, we want flexible ways to generate enough variety in data.

For example:
* to compare different software versions
* to mix data together (combining, injecting attacks)

* to generate data that wasn’t there

We want to understand various factors that need to be controlled for data
generation and capture: “influence factors”.



Microstructures in traffic

A “microstructure” is a short-term
structure corresponding to a
particular activity, manifested by
characteristic sequences at packet or
connection level.

State-of-the-art IDS models use these
to fingerprint or detect anomalous
behaviour.

For robust models, we need robust
microstructure notions.

Sample 1 | 0 0 l 0 EI 0

——————————————————— g

Sample2 0 0 0 0 EI 0 %

———————————————————— 2 | Flag

Sample3 0 I 0 0 EI 0 [:, A
T Fa
B Pa

Sample 11 0 0 0 l il ol 0 | E

___________________ o [ sa

Sample 2 0 1] B | 0o 0 2

Sample 38 0 11} i B B 0

0.000 0.005 0.010 0.015
Time [ms]

Example microstructure for HTTP-get request, showing
common characteristic structure



Factors influencing traffic and potential microstructures

There are many! For example:

* Application/task

* Implementation and version of
* Network congestion

* Host load

e Caching/repetition variation

* Background traffic



Factors influencing traffic and potential microstructures

There are many! For example:

* Application/task

* Implementation and version of
 Network congestion

* Host load

e Caching/repetition variation

e Background traffic
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Factors influencing traffic and potential microstructures

There are many! For example:

* Application/task

* Implementation and version of
 Network congestion

* Host load

e Caching/repetition variation

e Background traffic

FTP-connection comparison under load
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Factors influencing traffic and potential microstructures

There are many! For example:

* Application/task

* Implementation and version of
* Network congestion

* Host load

e Caching/repetition variation

e Background traffic
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DetGen: Controlling variations

Host

To handle data variation, we C HTTP scenario ) [ Scenario
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Application: Evaluating stepping-stone detection methods
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Challenge 3:

Understanding Model Performance



Machine Learning model development process

Famous advances

Evaluation * Ambiguity in translation

\ * Attention layer

e CNNs biased to texture

/

Model
(re)design

v

Probing

Problem
formulation

* Image stylization

/ * Video enhancement

UG G ERE e e Multi-scale encoders
model failures




Machine Learning model development process in NID

Existing NID datasets are:
Evaluation
\ * Difficult to read/interpret

 Sparsely/poorly labelled

* Non-malleable

Problem Sl Model design
formulation



Model evaluation vs probing
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Prediction
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Probing example: SQLi attacks hidden in congestion

LSTM-model activity classification

Take a state-of-the-art LSTM
packet stream classifier (Hwang 1.001
et al, 2019).

Pre-correction

0.75 1

Train on original dataset and
similar Detgen labelled traffic.

Classification score
o o
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()] o

Probing the model with

0.00 1

randomized labelled traffic shows 005 010 0.15 0.20
. . Simulated congestion RTT-delay [s]
that it makes mistakes under
higher Congestion! Activity == HTTP streaming == Multi-GET-request = Simple GET-request

=== Keep-alive === Post-request === SQL-Injection



Understanding and repairing the error

LSTM-model activity classification

Pre-correction Post-correction

Test hypothesis: generate two
identical SQLi connections, one
with high latency.
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Pre-processing the data
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improves model. 0% 010 045 050 005 010 015 039
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= HTTP streaming === Multi-GET-request === Simple GET-request
Activity

= Keep-alive === Post-request === SQL-Injection



Outlook and Future Work



Revisiting NIDS datasets: data science forensics

Examining some popular existing datasets in detail we find:

* Simulation artifacts cause short-cut learning e.g., OS-specific TTL values
* Whole classes of failed attacks, simplify classification massively
* Low overlap between malicious and benign traffic flow statistics

* Heavy reliance on pen-testing tools results in narrowly distributed features —
unrealistic baselines for real-world attacks

These datasets have been used for dozens (sometimes hundreds) of research
papers.



Example: comparing synthetic with real traffic
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Need for anonymisation

Synthetic data is invaluable, but real-world open datasets are essential

In recent work with the Alan Turing Institute we have begun investigating the
design and effectiveness of anonymisation mechanisms:

e organisational privacy and PIl: use of anonymisation functions or PETs

* utility for data analysis: retaining ability to train classifiers or trigger rules



Data-driven vulnerabilities: adversarial examples and more

Intentional failures _ Unintentional failures

Perturbation attack Physical adversarial examples Reward hacking

Poisoning attack Training data recovery RL environment side effects
Model inversion Model supply chain attack Concept drift/shift
Membership inference Trojaned model Natural adversarial examples
Model stealing Software exploit confusion Common corruption
Reprogramming Incomplete testing

See Microsoft’s methods for Threat Modeling Al/ML Systems and Dependencies at
https://docs.microsoft.com/en-us/security/failure-modes-in-machine-learning



https://docs.microsoft.com/en-us/security/failure-modes-in-machine-learning

Summary

We set out to construct “software models” from outside the software, using
data from network captures. Existing datasets were not precise enough,
inspiring DetGen.

Having a precise synthetic data tool supported new NIDS contributions:
* better models for detecting small-signal access attacks
* new datasets with ground truth to defeat stepping stone detection

* ways to probe state-of-the-art model failures to improve attack detection

For papers and tools, please visit https://detlearsom.github.io/



https://detlearsom.github.io/
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