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Abstract—Synthetically generated benchmark datasets are
vitally important for machine learning and network intrusion
research. When producing intrusion datasets for research,
providers make complex, subtle and sometimes unwary
decisions that can affect data utility. Unfortunately, examining
network data is difficult, so these decisions are rarely audited.
We perform an in-depth manual analysis of seven highly-cited
benchmark datasets, discovering six suspect design patterns,
which we term ‘data design smells’. We formulate six heuris-
tics to measure the prevalence of these issues. These design
choices, if not properly accounted for, can introduce severe
experimental bias, which we demonstrate with four concrete
examples. We then conduct a systematic impact analysis of
the wider literature that relies on these datasets. Our results
suggest that bad design smells correlate with poor data
diversity, murky labelling and poorly-defined generalisation
criteria. Worryingly, we find that improper usage of these
datasets can weaken their utility as benchmarks which, in
turn, biases downstream intrusion detection research. We
conclude with some recommendations for using and creating
NIDS datasets to help alleviate these issues.

1. Introduction

Benchmark datasets are vitally important in machine
learning research. Datasets such as MNIST [60] and
CIFAR-10 [57] allow researchers to compare method-
ologies on a fixed playing field, helping drive forward
innovation. Unfortunately, datasets are rarely perfect real-
world representations. It is well known that statistical
properties of datasets may be considerably simplified when
compared to that of real-world data. The ML pipeline is
delicate; improper data may introduce experimental bias,
weakening research findings. Even established benchmark
datasets can contain defects, such as mislabeling in CIFAR-
10 [76], arbitrary class distinctions in ImageNet [17] or
run-to-failure bias in the Yahoo S5 dataset [110]. In the
absence of high-quality datasets and critical examination,
experimental bias may be endemic to an entire research
field. To maximise the utility of datasets, identifying
mistaken assumptions and eliminating their downstream
effects are vital.

Our work shows that widely-used network intrusion
detection system (NIDS) datasets could suffer similar
issues when used for benchmarking ML methods. Unlike
fields such as image or voice recognition, popular NIDS
datasets can consist of synthetically generated data. Often,
this data is generated via a series of scripted interactions

across a testbed of virtual machines which are recorded
and converted into summary network flow statistics. The
research community should be grateful for these datasets;
publicly available network data is precious and these issues
do not make these datasets unsuitable for all purposes.
However, properly understanding their suitability for a
given task is critical.

We are not the first to highlight this: research discussing
issues with NIDS datasets is a well-established topic [12],
[23], [24], [52], [53], [97] alongside critiques of specific
datasets [39], [66]. In contrast to prior work, we aim to
assess the potential impact of data design of NIDS datasets
on downstream research. When creating an image dataset,
many choices are ultimately arbitrary such as the contents
or size of each class — there is little reason for CIFAR-10
to contain frogs over, say, turtles. In image recognition, the
feature space and problem space are also closely aligned.
In contrast, NIDS datasets rely heavily on domain-specific
choices: dataset providers must decide how the network is
configured, what attack classes to include, how attacks are
launched, what features to extract, how to imitate benign
traffic, and so on, which are typically obfuscated in the
feature space. These choices provide a contextual backdrop
that significantly alters threat models, attacker behaviour
and implicitly defines generalisation standards. We describe
these choices, conscious or unconscious, as data design.
Questionable data design choices are difficult to correct,
potentially introducing serious bias.

In this work, we analyse seven well-cited NIDS
datasets, each with varying levels of documentation. To
abstract away from the available documentation in our
analysis, we distilled six indicators of potential design
violations. Analogous to the term design smell [16], [99]
in software engineering — signals of questionable design
practises — we observe data design smells. We find
dubious practises in all datasets: attacks launched against
closed ports, labels leaked via features and millions of
near-duplicate flows, to name a few. Altogether, our work
shows that smells are ubiquitous in modern NIDS datasets.

For all seven datasets we analyse, we identify six data
design smells — poor data diversity, highly dependent
features, unclear ground truth, traffic collapse, artificial
diversity and wrong labels.

In Section 2, we introduce these seven datasets. Then,
in Section 3, we examine 38 papers that use these datasets,
seeded from top conferences and their citations. We
investigate four papers in detail, recreating their work when
necessary, and demonstrate how NIDS dataset design could
undermine their results. We find that the performance of



CADE [113], a state-of-the-art concept drift detector, could
rely on dataset artefacts, presenting worse performance
on fixed data. We also can outperform AJSMA [91],
an adversarial perturbation method, with a trivial attack,
suggesting that “smelly” data must be used with caution
when benchmarking adversarial attacks on NIDS. These
examples and two more are covered in Sections 3.1–
3.4. Looking at the remaining papers more generally, we
assess authors’ assumptions about NIDS data design, either
explicitly stated or implied via their methodologies. We
find that questionable assumptions are common and that
examination of raw network data is rare, possibly leading
to experimental bias. We discuss this in Section 3.5.

In order to fully understand the scope of these issues,
we then undertake a thorough manual and automated
analysis of these datasets. We discuss the design of our
manual analysis in Section 4.1 and we comprehensively
analyse 65+ attacks. In Section 4.2, we develop six
heuristic measures to assess the severity of these issues
automatically, which can be used on future datasets. Both
stages of our analysis uncover suspect design choices in
all datasets, covered in Section 5. We catalogue these so
researchers using these datasets can avoid experimental
pitfalls. For instance, we show that it is often trivial to
get perfect classification accuracy using a single feature
that is unrelated to the underlying mechanism of an attack.
Moreover, our automated heuristics score far better on
general tabular anomaly datasets [82], suggesting that the
impact of these design choices are particular to NIDS
datasets. Our results enable a deeper understanding of the
implications that questionable data design may have on
downstream NIDS research.

In Section 6, we discuss some potential recommenda-
tions to account for NIDS dataset design choices and to
improve the standard of intrusion detection research. We
conclude with related work in Section 7, limitations in
Section 8 and discussion in Section 9. To summarise, our
contributions include:

• Dataset Analysis: We devise a novel, compre-
hensive methodology for analysing network data
design, identifying potential research pitfalls stem-
ming from data design. We apply this to seven
popular synthetic NIDS datasets and 65+ indi-
vidual attack classes. We find that dubious data
design practises are ubiquitous across popular
NIDS datasets, necessitating their careful treatment
as benchmarks.

• Design: Analogous to code smells in computer pro-
gramming, we identify six indicators of potentially
bad data design choices that we call data design
smells.

• Prevalence: For each smell, we distill a heuristic
measure to evaluate its severity. These heuristics
are designed to be lightweight, allowing us to
measure 65+ attack classes. Our results show that
negligible data diversity, severe mislabelling and
trivial classification complexity are common in
NIDS datasets.

• Impact: We study 38 papers, seeded from top con-
ferences, that rely on these datasets, summarising
their questionable assumptions. We also investigate
four papers in detail, recreating their methodologies

when necessary, and demonstrate how bad data
design smells impact their experimental results.

• Recommendations: We propose guidelines for
using/developing NIDS datasets to minimise the
impact of these design smells, providing insights
into how to improve data usage such that we
as a community ensure higher quality intrusion
detection research.

2. Background

Releasing real-world data has severe privacy drawbacks
and establishing the ground truth of real-world traffic
is notoriously difficult [22]. Thus, synthetic datasets are
commonly used in IDS research, generated using data
collection testbeds.

We examine NIDS datasets that consist of two parts: the
original traffic, in PCAP format, and a set of preprocessed
statistics summarising each flow. This is a limitation
of our approach as we require traffic captures that we
can manually audit and assume there is an accompa-
nying feature set for our automated analysis. Despite
this commonality between our chosen datasets, there are
fundamental differences that complicate comparisons. For
instance, despite attempts to standardise feature sets [11],
[85], researchers often use the bespoke flow statistics that
accompany a dataset.

In this section, we provide a brief overview of each
dataset examined and the documented design choices of
their authors. We omit the popular datasets KDD Cup [3]
and NSL-KDD [101], as these are both derivatives of
DARPA 1999 [65], which has long known to be faulty [69].

There are some modified versions of these datasets [39],
[66], [85], which either fix some labelling issues or alter
feature sets, however, we examine the underlying dataset
design, which cannot be changed by modifying feature sets.
We use the original versions — unless where otherwise
stated — as we aim to evaluate existing research, which
predominately uses these original datasets.

TABLE 1: Dataset Summary

Dataset Year Class Feat. Hosts Cit.1

CIC IDS 2017 2017 14 80 14 3264
CIC IDS 2018 2018 16 80 500 3264
ICSX 2012 2012 2/52 20 25 1365
UNSW-NB15 2015 10 49 45 2817
Ton IoT 2019 10 44 12 254
Bot-IoT 2021 5 45 10 1217
CTU-13 2014 13 15 - 866

CIC IDS 2017/18 [89] – Developed by the Canadian
Institute of Cybersecurity, CIC IDS 2017 (CIC 17) and
CSE-CIC IDS 2018 (CIC 18) share a similar design, the
latter being an expanded version of the former. CIC 17
comprises 14 hosts and CIC 18 comprises of 500 hosts.

Flow statistics were calculated using the CICFlowMeter
tool [1], which measures 80 features. The authors of these
datasets emphasize their role as ‘benchmark’ datasets and
prioritize the ‘realism’ of the background traffic and the
‘diversity’ of attacks.

1. Number of citations according to Google Scholar, 21/03/2024
2. We split ISCX’s attack class into 5 based on destination port

information, corresponding with each unique stage. Splitting the attack
traffic is common in the wider research [32], [40].



ISCX 2012 [94] – The ISCX 2012 dataset is the predecessor
to the above-mentioned CIC 17 and 18 datasets, with
some differences. First, the authors used the IBM QRadar
tool [2] tool to extract a unique set of statistical features.
Second, attacks were launched as four overlapping, multi-
stage ‘scenarios’. We consider each unique stage of these
scenarios to be a distinct attack and label them accordingly.
UNSW NB15 [74] – Unlike the other datasets examined,
UNSW NB15 contains data created using a hardware traffic
generator, combined with benign traffic from a cyber
range. The feature set is divided into four categories: basic,
content, time and additional features, consisting of protocol
specific flags and connection rate-based features.

The dataset’s design emphasises its recency; the authors
say that it contains ‘contemporary synthesized attack
activities’ and they claim that the dataset is more complex
than KDD Cup [3], [75].
TON IoT [73] – TON IoT is a collection of datasets,
including sizeable network traffic. The feature set contains
few continuous features; instead, most are protocol specific
flags, relating to DNS, SSL and HTTP connections, such as
the domain name of a DNS query. Design claims emphasise
the ‘heterogeneity’ and ‘complexity’ of the data, with the
authors publishing work quantifying this [21].
Bot-IoT [56] – The paper describing Bot-IoT stresses
realism as a design goal, stating that it is a ‘realistic . .
. dataset’ with a ‘massive amount’ of ‘realistic benign
traffic’. The authors provide two variants of Bot-IoT: a
full version with a truncated feature set and a condensed
version with an additional 16 aggregate features, such as
the number of packets per IP. We evaluate the condensed
version as it is more commonly used in the papers discussed
in Section 3.
CTU-13 [41] – CTU-13 is a botnet dataset consisting of 13
‘scenarios’. It differs from the other datasets we analyse in
two major ways: first, data from the infected host is labelled
in a highly granular manner and, second, it contains both
Background and Normal traffic. In Section 5, we use the
normal traffic for our comparative measures, as this was
used as the benign traffic in the original accompanying
paper. Due to the highly granular nature of the labels, we
combine similar labels to form our classes, providing more
detail in the Appendix.

3. Bad Smells and their Downstream Impact

As ML-based NIDS in research often use flow statistics
rather than raw network data, the underlying traffic is
obfuscated, such as the services within or low-level choices
about the attacks. The papers accompanying these datasets
sometimes provide limited descriptions of the generation
process [21], [74], [88] and there is no comprehensive
account of what specific traffic is in these datasets. As
a result, a naive security researcher could be unaware of
what they are detecting beyond high-level labels, such
as ‘Exploits’. Although researchers could produce such
an account themselves, in Section 3.5, we argue that
assuming that datasets can be used ‘off-the-shelf’ with
limited analysis has become the default in the research
community. Thus, there has been little auditing to uncover
potential complications in these datasets. We aim to bridge
this gap in knowledge.

To evaluate the usage of these datasets in research, we
systematically review a subset of well-regarded papers that
rely on these datasets. For our selection criteria, we began
with works published between 2015 and 2023, inclusive, at
the seven top-ranked non-cryptography computer security
conferences — according to [116] — which cite at least
one of these datasets. As we could not find many papers
citing ISCX 2012, Ton-IoT, Bot-IoT or CTU-13 via this list,
we expanded our criteria to include a greater number of
security conferences, including CNS, RAID and DIMVA,
as well as networking and data mining conferences, in-
cluding KDD, WWW, CIKM and InfoCOM. Thus, we
source papers from USENIX Security, S&P, EuroS&P,
CCS, AsiaCCS, CNS, RAID, DIMVA, KDD, InfoCOM,
WWW, SAC, ACSAC and CIKM. We collate a list of
38 papers via this process, excluding systematisation of
knowledge papers and papers whose main aim is to point
out issues in other areas of NIDS dataset usage (for more
details on our paper selection criteria, see Appendix B).

We look more closely at four example papers — two
directly from the above overview and two cited by papers
in the overview — and demonstrate how questionable data
design may have impacted their results. In doing do, we
observe that these complications stem from data patterns
which we explicitly highlight. These observations lead
directly to our bad data design smells, which we emphasise
in the text. Altogether, our aim is to demonstrate that these
datasets are being used at top-level conferences with little
auditing or examination of the underlying data, whilst
referencing similarly unsuspecting work.

We stress that we choose the phrase ‘data design smell’
because, just like bad smells in software design, they are
merely indicators of potentially bad practises, and using
“smelly” data does not immediately invalidate research
results. In the following examples, we do not claim to
negate the methodologies of the examined work. Instead,
we wish to demonstrate how assumptions about NIDS data
design can produce misleading conclusions.

3.1. Example 1 - LUCID

Original Paper. LUCID [36] is a highly-cited,
state of the art DDoS classifier, evaluated using the DDoS
traffic in ISCX 2012, CIC 17 and CIC 18. The authors’
code has been made open-source [35].

At LUCID’s core is a traffic preprocessing algorithm.
Ten features are extracted from the first n packets of a flow,
zero padding when necessary, combining packet-level and
flow-level information. This produces a 2-dimensional data
structure of size 10× n which feeds into a Convolutional
Neural Network to discriminate DoS flows from benign.

Data Design. Upon examining CIC 17, we find
that a single webpage is attacked across all DoS classes,
namely, the default Apache page. As a result, the packet
size features are extremely narrowly distributed, with 97%
of total backwards packet size features approximately
equal to 11595± 1% bytes (discounting flow calculation
artefacts [39]). Moreover, flows with this value do not
appear in the benign data.

Experiment. Fixing n = 10, we repeat LUCID’s
feature extraction process on CIC 17. The authors consider
a number of values for n and also truncate flows according



to timing parameters. We found these modifications negli-
gible and use the default values from [35]. We compare
this to a simpler feature extraction process as a baseline
experiment. Whilst we still consider just the first n packets
of a flow, we extract only 3 features: total TCP size, total
packet size and flow duration. Note that we’ve discarded the
granular packet-level information, resulting in a massive
reduction of LUCID’s 100 features. We use a random
forest as our classifier.

TABLE 2: Results of LUCID, Baseline and Baseline
(Corrected) on CIC 17

Classifier ACC F1 TPR TNR

LUCID 0.997 0.997 0.9988 0.9953

BL 0.997 0.997 0.9985 0.996

BL (C) 1.000 1.000 1.000 1.000

Results & Analysis. Table 2 shows that we achieve
comparable results to LUCID, despite using a much smaller
feature set. For both LUCID and our baseline model, most
misclassified flows were failed TCP handshakes. Filtering
these flows, we produce a corrected version of the DoS
dataset used by LUCID. On this dataset, a random forest
achieves perfect accuracy and recall (BL (C)).

The design of LUCID implicitly assumes that predictive
power can be gained by combining packet-level and
flow-level information. However, given the severe lack
of variation in CIC 17, this is not true. The paucity of
variation in CIC 17’s DoS traffic stems from two data
design choices made by the dataset authors: only launching
DoS attacks against a single webpage and using fixed
network conditions. Our analysis of ICSX 2012 and CIC 18
suggests that similar results would hold for those datasets.

Note that we cannot pass judgement on the effective-
ness of LUCID in other, more realistic settings, where a
more complex architecture might be justified. However,
due to the design of the chosen test datasets, LUCID’s
complexity is not justified by the experiments performed
by Doriguzzi et al.

Bad Smell 1. Many NIDS datasets contain data
generated via automated tooling with fixed con-
figurations or limited exploration of an attack’s
capabilities. This homogeneity causes poor data
diversity, inadequately testing a model’s generali-
sation capabilities and rewarding overfitting.

3.2. Example 2 - AJSMA

Original Paper. Considering adversarial attacks
in constrained domains, Sheatsley et al. [92] present the
Augmented Jacobian Saliency Map Attack (AJSMA), a
white-box attack evaluated on NSL-KDD and UNSW NB15.
The motivating insight of AJSMA is that, in intrusion
detection, the problem space and feature space are distinct
and arbitrary transformations may result in invalid data.
Thus, when perturbing features, attacks must adhere to
constraints. The ability of AJSMA to generalise across
models is tested using five neural networks (trained using
a stratified shuffle-split and labelled MA - ME) as well
as other ML models, including Decision Trees (DT).

Data Design. As a result of UNSW NB15’s testbed,
a subset of features are highly performant across multiple
attack categories, despite being apparently unrelated to the
attacks’ underlying mechanisms. In particular, the Protocol
and TTL features overlap minimally between the benign
and malicious classes and it is possible to separate these
classes with 98% accuracy using these features alone. We
provide more insight into why this is the case in Section 5.1

Experiment. As a baseline comparison to AJSMA
on UNSW NB15, we consider a simple feature perturbation
attack: by modifying features, we ‘convert’ all attack flows
to UDP (by altering the ‘Protocol’ and ‘RTT’ features),
and TTL values to match those of benign traffic. These
modifications are considered valid under the constraints
that AJSMA adheres to; the original paper assumes that
sound attack traffic can be created by converting TCP
traffic to UDP and vice versa, provided constraint sat-
isfaction. Unlike AJSMA, we do not assume access to
the model’s gradients or parameters. Because of this, we
cannot replicate Sheatsley et al.’s evaluation process exactly.
However, we do consider the performance of our attack
across multiple models.

TABLE 3: Results of AJSMA and our Heuristic Attack
on UNSW NB15. We consider the average accuracy across
the tests presented by Sheatsley et al., using the notation
Mi → Mj to denote an attack on model Mj using the
gradients of Mi where i, j ∈ A,B,C,D,E and i ̸= j.

Attack (Mi →)Mi (Mi →)Mj (Mi →) DT

AJSMA 1.000 0.790 0.166

HA 1.000 1.000 1.000

Results & Analysis. Table 3 shows our attack
achieves identical performance to AJSMA on UNSW NB15.
However, we note that AJSMA’s performance degrades
when generalising across models. As our attack does not
rely on the gradients of a specific model, we maintain
perfect adversarial accuracy across all models tested.

We note that the performance of our attack is not due
to any inherent qualities of malicious traffic. Instead, the
large disparity between the benign and attack traffic is the
result of data design choices, in the form of protocol
and TTL choice in UNSW NB15. As a result, whilst
AJSMA may be a superior attack in the general setting of
constrained adversarial examples, the presented accuracy
on UNSW NB15 is not a meaningful measure of the attack’s
effectiveness. Moreover, as producing perfect adversarial
perturbations is trivial, worthwhile comparisons between
AJSMA and alternative attack methodologies using UNSW
NB15 are impossible.

Bad Smell 2. Poor design of simulation testbeds
can result in features of outsized importance that
are unrelated to the underlying mechanism of an
attack. Such highly dependent features reduce the
complexity of attack detection and lead to overly
optimistic interpretations of classifier performance.



3.3. Example 3 - Domain Adaptation (ADA)

Original Paper. Due to the high rate of concept
drift in security tasks, such as intrusion detection, ensuring
that a deployed classifier can generalise to unseen attack
classes is important. Singla et al. [96] propose a method-
ology for training NIDS to a rarely seen attack class via
adversarial domain adaptation, evaluated on UNSW NB15.

Singla et al. preprocess UNSW NB15 into two datasets:
a source dataset, containing benign traffic and eight attack
classes, and a target dataset, containing benign traffic and
a ninth attack class, not included in the source dataset. At
training, only a small number of samples from the target
dataset are used. We focus on the case where 100 samples
are used as this situation is highlighted by Singla et al,
who consider the Exploits, Reconnaissance and Shellcode
classes as holdouts.

Singla et al.’s ADA architecture has two parts, a gener-
ator and discriminator model. The generator has two goals,
taking samples from both the source and target datasets,
converting them into a domain-invariant embedding. This
embedding is fed into a softmax layer, which classifies
a sample as malicious or benign. Simultaneously, the
discriminator identifies whether the embedding comes
from the source or target dataset. The generator is trained
such that this embedding fools the discriminator. Once
finished, the generator functions as a NIDS, capable of
high performance on the target dataset despite having
access to only a small number of samples.

Data Design. Analysing UNSW NB15, we found
heavy overlap between many of the attack classes, as well
as features that correlate highly with all classes. As a result,
it is dubious whether the target dataset can meaningfully
be considered distinct from the source dataset, an implicit
assumption in Singla et al.’s training methodology. In
particular, the three most common combinations of forward
and backward packets counts for the Exploits class also
make up 40% of the Shellcode and Reconnaissance classes,
and many of these flows appear to be notionally identical.
This overlap between attack classes also leads to an overlap
in highly discriminative features. Having highly similar
attacks across disconnected attack categories is an implicit
data design choice that, if unaccounted for, leads to test
set leakage in experiments similar to Singla et al.’s.

Experiment. We recreate Singla et al.’s set-up,
reproducing their results. We then repeat the experiment
whilst removing entries from the source dataset that are
found in multiple classes, identified via the source and
destination packets features.

We also remove features that are unjustifiably per-
formant on the malicious data, such as sttl, dttl and
synack (specifically, we remove the ‘TTL’ and ‘RTT’
features with HDFC values higher than 0.7, detailed in
Section 4.2). This process results in a large number of
samples being removed from both the Reconnaissance and
Shellcode classes, preventing us from repeating Singla et
al.’s experiments using those classes as holdout classes.
Thus, we only consider the case where the target dataset
contains samples from the Exploits class.

Results & Analysis. On the unmodified version
of UNSW NB15, we reproduce similar results to those
presented by Singla et al., achieving a 6% gap between

TABLE 4: Best Reported Accuracy of ADA model vs Base
case model for 100 target training samples.

Classifier Original Modified

Base (60 epochs) 0.82 0.82

Base (1000 epochs) 0.8484 0.8442

ADA (10000 iterations) 0.8804 0.8350

the base case and ADA models3. However, when we
remove the problematic attack samples and classes, this
advantage drops to a 1.5% performance gap. When
removing malicious traffic, we downsample the benign
traffic to maintain the same benign/malicious ratio as
before. We also note that the base model neural network
can exceed this score by extending its training regime.

From our experiment, Singla et al.’s results are biased
by several data design issues, namely, unclear attack classes
with incomplete attack capture, which lead to poorly
defined boundaries between attack classes. We note that
the plurality of this overlap stems from attacks in UNSW
with no apparent effect, and it is unclear how legitimate
this attack traffic is. We emphasise that the assumptions
made by Singla et al. about UNSW NB15 are completely
reasonable; Exploits, Reconnaissance and Shellcode are
distinct categories of attacks and there is little reason
to assume that this conceptual blurring between classes
would be present in the data. However, this demonstrates
that, without modification, UNSW NB15 is unsuitable for
evaluating the ability of classifiers to generalise between
attack categories.

Bad Smell 3. Datasets can lack clear labelling logic,
often labelling background services as attacks for
unspecified reasons. This unclear ground truth
creates a disconnect between what researchers
understand a class to contain and what it actually
contains, limiting their ability to reason about their
methodology and results.

3.4. Example 4 - CADE

Original Paper. Yang et al. [113] also combat
concept drift via contrastive learning with CADE. CADE
leverages contrastive learning to detect drifting samples,
including an evaluation on CIC 18.

In their experimental setup, the authors picked one
day’s worth of benign traffic in addition to malicious traffic
from the Infiltration, DoS Attacks - Hulk and SSH - Brute
Force classes. They then iteratively train their classifier
on the benign traffic and two malicious classes; the third
malicious class represents the ‘unseen’ class and is only
used in the test set.

Data Design. Analysing CIC 18, we note that
attacks take place within short time frames. Whilst this is a
legitimate data design choice, downstream researchers must
be aware of this fact when evaluating their methodologies.

3. Although Singla et al. report that they use a source training dataset
with 83,961 samples, it’s unclear what ratio of benign to malicious traffic
they use. We achieve similar results using a source training dataset with
53,112 benign and 38,679 malicious samples.



Unfortunately, CADE does not remove the Timestamp
feature during evaluation, leading to a potentially highly
dependent feature.

Experiment. We use a corrected version of CIC
18 [66] after verifying the author’s fixes to the labelling
and feature extraction process, and reran the CADE
experiments (with the original and fixed versions of the
dataset), whilst removing the Timestamp feature.

Results & Analysis. Table 5 shows our results. The
performance is severely degraded for all but the original
setup. These results reinforce Bad Smell 2 and we note
that mislabelled data cause serious experimental bias.

Bad Smell 4. Inaccurate ground truth of generation
testbeds can lead to mislabelled data. The wrong
label smell degrades the ML pipeline by altering
classification complexity. Furthermore, researchers
discovering disparate subsets of labelling issues
can lead to inconsistent benchmarks, complicating
direct comparison between techniques or architec-
tures.

This example highlights how data design smells are
not harmful in all contexts: including the Timestamp is
not unreasonable if the data shows periodic behaviour, as
in UGR’16 [68]. However, in CIC 18 attacks reside within
narrow time-windows [88], making Timestamp a highly
dependent feature for this dataset, as it is both highly
performant with no connection to the attack’s underlying
mechanism.

TABLE 5: F1 results for CADE on the original and fixed
CIC 18 dataset, with and without the Timestamp feature.

With Timestamp Without Timestamp

Original Fixed Original Fixed
SSH - BF 0.8687 0.4968 0.1214 0.0
DoS Hulk 0.9997 0.9988 0.7614 0.9987
Infiltration 0.9999 0.9929 0.0537 0.9964

3.5. Potential Data Bias in Research

We now look at the papers more generally. We assess
implicit assumptions made across four criteria, reflecting
our smells thus far. First, we consider assumptions about
data diversity, which we subdivide into attack variation
(AV) — the number of distinct interactions in a class —
and feature variation (FV) — the variability of features in a
class. We then assess whether papers include critical, post-
hoc analysis of feature importance, connecting features to
mechanism of an attack. In the absence of such analysis,
we say the paper assumes that the data was free from
highly dependent features (HDF). Finally, we consider
whether papers assume the data was free from wrong
labels or unclear ground truth, which we combine into a
single criteria (W/U). This process was undertaken by a
single author and then repeated by a second author on a
random subset of 25% of papers, who then cross-referenced
their findings to ensure agreement. The full paper analysis
methodology as well as paper selection criteria are detailed
in Appendix B.

Results & Analysis. We list our results in Table 7,
marking assumptions as ‘unclear’ when unable to fairly
judge. As papers made few comments about the data, we
judged assumptions implicitly via their methodologies.

Many papers applied techniques that seem unjustifi-
ably complex given the low attack variation in classes,
such as training individual models for each attack [105]
or using a complex setup such as a LSTM variational
autoencoder [108], whilst a minority aim to generalise
between attack classes [47], intentionally injecting variety.
Without a critical examination of feature importance,
we believe that papers in our overview overwhelmingly
assumed the datasets were free of highly dependent features.
Such analysis was rare, with [44], [52], [59], [86] being
notable. Some papers used techniques that assumed greater
feature variety than is present, such as oversampling via
SMOTE [13]. Due to low variability, we demonstrate how
naive application of techniques such as SMOTE [25] fails
to introduce feature variety in Table 6 and how packet-level
features succumb to low variation in Section 3.1. Papers
also made statements about the properties of NIDS data
generally, without investigating whether specific dataset
design characteristics were responsible for their results [40],
[90].

With a few exceptions [52], [59], [114], we found no
evidence that papers audited any raw PCAP data. As a
result, almost all papers used mislabelled or unclear data,
highlighted in Section 5.1. Based on their research aims,
mislabelled data was irrelevant for some papers [26], [51]
(as such, these papers were left out of our scope), and a
minority used a corrected version of CIC 17 [86] and CIC
18 [59]. Although these corrected dataset were released
after many of these papers, cursory manual analysis would
have also uncovered mislabelling issues.

Often, misconfigured testbeds result in failed attacks
e.g., attacks launched against closed ports. We understand
that detecting these connections is a reasonable goal for
an IDS. However, due to the homogeneity of the traffic,
these can be trivial to detect in a machine learning setting,
as standard, randomised train/test splits result in data
leakage. No papers in our overview commented on this or
amended their evaluation process, and all were seemingly
unaware of these discrepancies. We believe it is exceedingly
likely that papers would re-evaluate their proposed model
architectures/pipelines if aware of the simplicity of the
classification task. This suggests a new bad smell.

Bad Smell 5. Simple configuration mistakes can
extinguish data diversity from a class. We call
this problem traffic collapse, as statistics ‘collapse’
into a trivial distribution, preventing models from
learning any meaningful information from features.

In CIC 17 and Bot IoT, because of spurious network
conditions, some attack traffic is questionable, such as
malformed connections or extraordinarily high retransmis-
sion rates. We believe these out-of-distribution flows are
pernicious, preventing classifiers from achieving perfect
accuracy, instead presenting near-perfect accuracy. The
former implies that classification may be trivial whilst
the latter does not, justifying the use of complex ML
architectures. Only very few papers appeared to examine



misclassifications to some extent [55], [108], [114]. This
introduces our final bad smell.

Bad Smell 6. When generating network traffic,
a number of difficult-to-control variables — poor
network conditions, network capture failures, re-
transmission rates etc. — impact the structure of
flows. If not properly managed, these variables
create artificial diversity, causing researchers to
overestimate classification complexity.

TABLE 6: Total Length of Fwd Packet is highly discrimini-
tive in CIC 17. For 72.7% of Heartbleed flows, this feature
equals 7920. Furthermore, all variability in this class is
caused by artifical diversity. Correcting the original data
(C) exaggerates this effect.

Org. Org. (C) SMOTE SMOTE (C)

TLFP 72.7% 100% 71.4% 100%

4. Finding Bad Smells

In this section, we introduce a methodology for ex-
amining NIDS datasets. This analysis has two stages: a
manual stage — a qualitative evaluation of the problems
with these datasets — and an automated stage — a
quantification of bad smell prevalence and severity via
heuristic measures. To assess the rate of false positives,
we design our methodology without reference to CTU-13
and use it as a test case.

4.1. Manual Analysis

We aim to document all flows within each attack class.
Complete coverage is vital; it is likely that researchers
using these datasets will find a subset of problems and
remove the offending traffic. Thus, researchers are not
comparing their results on a fixed dataset but rather on
several disparate datasets, each corrected in a unique man-
ner. Standardising this process requires a full examination
of the underlying PCAP data.

Examining each flow is onerous and time-consuming.
Instead, we assume that we can identify unique attacker
behaviour via unique values of the Total Source Bytes
feature, a standard inclusion in the accompanying feature
sets. Similarly, we assume that unique values for the
Destination Port and Total Destination Bytes features
correspond with unique victim behaviours. We cluster
flows that attain the same values on these features, up
to small variations, reducing the number of flows to be
analysed from tens of thousands to a small number of
clusters based on CSV data alone.

For each of these clusters, we randomly select an
exemplar flow and locate it in the PCAP data via Source
and Destination IPs/Ports and Timestamp information.
Using these exemplar flows, we examine each cluster in
parallel. For each flow cluster, we aim to understand the
generation process that give each cluster its characteristic
properties. These include understanding the attack, how
the attack is realised, the target service, the labelling logic

and the intra- and inter-cluster relationships between flows.
We survey each flow via a series of yes/no questions, each
related to a bad smell from Section 3.

Q1: Wrong Label – Does the flow’s label accurately
describe its behaviour? Relying on the provided doc-
umentation and contextual clues, we assess whether its
label is correct. Labels have varying degrees of granularity,
including specific attacks, attack classes and high-level
descriptions — e.g., Heartbleed, Reconnaissance and
Attack. We rely MITRE’s CVEs [70] and CWEs [71] for
attack definitions. For vaguer labels, we rely on personal
assessment. If we can’t associate a flow cluster to its label,
the wrong label smell is present.

Q2: Unclear Ground Truth – Does the flow originate
from the attacker network and/or is directed towards
the victim network? With the exception of ‘insider’
attacks, we expect attacks to occur between the attacker
and victim networks, or within the attacker network for,
say, C&C traffic. Failing this indicates that unclear traffic
has been labelled alongside the attack. We check whether
these flows are associated with any background processes
to confirm this.

Q3: Highly Dependent Features – Do distinct
clusters share similar properties? Although we aim to
capture similar flows in our clusters, it is problematic
when attacker behaviour (determined in Q1) is identical
across clusters (whilst differing from the benign data).
These properties may be reflected in the chosen feature set,
biasing models via unrelated features. If so, we consider
the highly dependent feature smell to be present.

Q4: Artificial Diversity – Is the primary difference
between clusters due to network artefacts? Unrealistic
network conditions may lead to similar flows (which
we determine via Q1) being distributed across several
clusters. We consider failed handshakes, aborted flows,
frequent network anomalies — e.g, dropped packets or
retransmissions — and differences in flow termination as
network artefacts. If clusters differ due to these phenomena,
the artificial diversity smell is present.

Q5: Poor Data Diversity – Are clusters large, relative
to the size of the class? Based on our assumptions, large
cluster sizes indicate that a class mostly consists of both
the attacker and victim engaging in the same behaviour
repeatedly. If a cluster (and any related clusters identified
in Q4) contains over 25% of all flows, we assume there
is poor data diversity. When possible, we confirm the
source of this lack of variety — such as the reliance on
automated tooling — via the details gathered during Q1
and Q3. We note that it is reasonable to expect certain
volumetric attacks, such as ACK floods, to have low data
diversity. However, detecting such attacks via ML still
requires careful evaluation, due to the risk of overfitting
to arbitrary features or leaking test set data.

Q6: Traffic Collapse – Has the attack been fully
executed? When an attack is not fully realised, due to, say,
a secure service, the response from the victim is typically
limited across the entire interaction. We examine flows
for evidence of host responses. Unexpected behaviours
include backwards flows containing only RST packets and
flows with no response. Here, we say the traffic collapse
smell is present.

A high-level summary of this process is in Figure 1.
If a question’s answer is unclear based on a single flow,



TABLE 7: Paper Assumptions. ✓: assumption present, ✓*: assumption partially present, ✘: assumption not present/relevant,
-: unclear. I: ISCX 2012, C: CIC 2017, C2: CIC 2018, U: UNSW NB15, CT: CTU-13, B: Bot IoT, T: Ton IoT.

Assumptions
Paper Dataset FV AV HDF W/U

[40] I,U ✓ ✓ ✓ ✓
[115] I,CT ✓ ✓ ✓ ✓
[79] U ✓ ✓ ✓ ✓
[96] U ✓ ✓ ✓ ✓
[6] I,CT ✓ ✓* ✘ ✓
[61] C ✓ ✓ ✓ ✓
[112] CT ✓ ✓ ✓ ✓
[15] C ✓ ✓ ✓* ✓
[62] C ✓ ✓ ✓ ✓
[100] C ✓ ✓ ✓ ✓
[114] U ✓ ✓* ✓ ✓
[47] C ✓ ✓ ✓ ✓
[113] C2 ✓ ✓ ✓* ✓

Assumptions
Paper Dataset FV AV HDF W/U

[18] C2,U ✓ ✓ ✓ ✓
[5] I,C,C2 ✓ ✓ ✘ ✓
[49] I,C ✓ ✓ ✓ ✓
[108] U ✓ ✓* ✓ ✓
[107] C ✓ ✓ ✓ ✓*
[52] C ✘ ✘ ✘ ✓
[63] C,C2 ✓ ✓ ✓ ✓
[19] U ✓ ✓ ✓ ✓
[14] B,T ✓ ✓ ✓ ✓
[87] I,C2,CT ✓ ✓ ✓ ✓
[111] U ✓ ✓ ✓ ✓
[13] T ✓ ✓ ✓ ✓
[106] C2 ✓ ✓ ✓ ✓

Assumptions
Paper Dataset FV AV HDF W/U

[48] C2 ✓ ✓ ✓ ✓
[59] C ✘ ✘ ✘ ✘
[55] U ✓ ✓ ✓ ✓*
[33] C ✓ ✓ ✓ ✓
[44] U ✓* ✓* ✘ ✓
[105] CT,T ✓ ✓ ✓ ✓
[86] C - - ✘ ✓*
[90] U ✓ ✓ ✓ ✓
[34] B - - - -
[30] C,C2 ✓* ✓ ✓ ✓
[78] U ✓ ✓ ✓ ✓
[20] I,C ✘ ✘ ✘ ✓
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Figure 1: Overview of Manual Analysis Process. To facilitate easier discussion, note that we group our bad smells into
three categories: Mislabelled, Simulation Artefact and Highly Repetitive.

we sample new flows until we can satisfactorily answer,
indicated by the backwards arrow in Figure 1.

4.2. Automated Prevalence Analysis

Although a qualitative analysis is necessary, it is
arduous and time-consuming. An automated process that
can highlight problems quickly when generating a dataset
would be highly beneficial. However, PCAP data is a
complicated format. As the properties of each dataset are
highly variable, it is difficult to verify all attacks across all
network conditions. Instead, we design some heuristics for
CSV data, with minimal reference to the original PCAPs.

We preprocess all features according to standard prac-
tises: we use a min-max scaler and convert categorical
features to ordinal or one-hot encoded features. Our aim
was to mimic how these datasets may be used by a
researcher who hasn’t checked the underlying data.

Mislabelled. We perform two tests for mislabelled
traffic, corresponding to the unclear ground truth and
wrong label smells respectively. Naive labelling algorithms
based on IPs have a tendency to mislabel background
traffic that are orthogonal to the mechanism of an attack as
malicious, such as authentication traffic, discovery services,
and advertising features. Thus, labeling decisions can
become ambiguous or unclear. To address this, we maintain
a list of ports related to well-known background services
and flag a flow as unclear if its destination port feature,
denoted as FDst Port, belongs to this set of ports (indicated
by BG Ports4). Note that we base our ports on the datasets
examined; services operating on these ports can still be
abused by attackers, and the specific ports chosen may not

4. BG Ports = {0, 53, 67, 68, 111, 123, 137, 161, 179, 389, 427,
520, 1723, 1900}

be suitable for other datasets, leading to false positives.
We quantify potentially unclear flows by calculating the
ratio of flows sent to these ports to the total number of
flows in the dataset. Thus, for given class C:

UGTC =
|FDst Port ∈ BG Ports|

|C|
UGTC ∈ [0, 1] (1)

To estimate the number of flows with the wrong label
smell, we use the Edited Nearest Neighbour Rule (ENN),
proposed by Wilson et al. [80], [109]. ENN identifies a
sample as close to a decision boundary if its label differs
from the majority of its k-Nearest Neighbours. We modify
the original ENN process by breaking ties in favour of the
mislabelled class.

Setting k = 4, we define the majority class identified
by ENN as ENN (x) where x ∈ C. We then measure the
degree of mislabelling via the percentage of elements of
C misclassified by ENN, or:

WLC =
|Ĉ|
|C|

where x ∈ Ĉ iff ENN(x) ̸= C, WLC ∈ [0, 1]

(2)
Simulation Artefacts. To detect highly dependent

features, we use a maximal feature efficacy process. Look-
ing at each attack class C separately, we measure the
F1 score of a random forest classifier distinguishing C
from the background when trained on a single feature,
Fi. Intuitively, if Fi is highly dependent, we expect an
unreasonably high F1 score. Although this process can
detect multiple artefacts, for brevity, we report only the
most severe instance. Thus, we define HDFC as:

HDFC = MAX (F1 (Fi))i HDFC ∈ [0, 1] (3)



During manual analysis, artifical diversity was mostly
seen when unstable network conditions caused high num-
bers of dropped or re-transmitted packets. We check that
problematic packets remained within the bounds set out
by prior work [37]. As this tended to be general across the
network capture, we only report this in Section 5 when
notable for a dataset. This is the only heuristic which
requires access to the original PCAPs.

Highly Repetitive Traffic. Rather than classifica-
tion complexity [50], we aim to measure data diversity
independent of classification. Thus, our measures for the
traffic collapse and poor data diversity smells use a two-
stage clustered similarity process: first, we estimate the
number of clusters, N , within class C via the Elbow
method [102]. We then apply KMeans to assign each
data point a cluster, Ci. Via cosine similarity, we measure
similarity between randomly sampled pairs as:

CSCi
=

A ·B
∥A∥∥B∥

where A ∼ Ci, B ∼ Ci,

CSCi ∈ [0, 1]

(4)

We record the average CSCi between M 5 pairs from
each cluster weighted by cluster size, expecting a score
of approximately 1 for near-identical pairs. This provides
quick insight into a class’s cluster sizes as an approximate
measure of data homogeneity, corresponding to our poor
data diversity smell:

PDDC =
∑
i<N

∑
j<M

|Ci|
|C|

CSCi

MN
PDDC ∈ [0, 1] (5)

For our traffic collapse bad smell, we wish to measure
an egregious lack of data diversity, potentially caused by
configuration issues. We repeat the above process, but
measure the percentage of pairs from each cluster where
CSCi

exceeds a threshold value of 0.956, indicating that the
flows are functionally identical. We report the maximum
value across our clusters. Using Iverson brackets, we write
this as:

TCC = max
i

∑
j<M

[CSCi > 0.95]

M

 TCC ∈ [0, 1]

(6)

5. Results

5.1. Manual Analysis

We apply our manual analysis process to over 65
attack classes. As part of our efforts, we will release
a comprehensive, open-access account that documents
all problems we identified, helping researchers navigate
experimental pitfalls. In this section, we demonstrate the
scope of the problems we uncovered with examples.

5. We found scores to be converge consistently with M ≈ 100
6. We select this value as corresponds to an angle of approximately

π
10

between sampled flows, or 10% of maximal dissimilarity

Mislabelled. Mislabelling stems from design
choices throughout the generation process. Researchers
must be clear about what they are generating. However,
this can be murky, such as in UNSW NB15, which used the
predetermined ‘strikes’ of the IXIA PerfectStorm tool [54].
This causes unclear ground truth, such as the Fuzzing
class containing dubious routing attacks. These have no
associated CVE and simply alter minor aspects of the
protocol, creating flows that are statistically identical to
their benign equivalents. We also note that the definition
for UNSW NB15’s Generic class, confusingly, involves
block cipher vulnerabilities with no relationship to the
dataset’s contents [74].

Labelling flows via IPs and timestamps is challenging.
Researchers must account for background traffic of the
attacker network; naive logic may mislabel these flows.
TON IoT consistently treats DNS traffic as malicious; in
the DoS and XSS classes, 55% and 28% of functioning
flows are DNS requests, respectively. Labelling multi-stage
attacks is complex, leading to errors. In CIC 2018, the
Infiltration class misses entire attack stages, incorrectly
labelling them as benign. Mislabelling can also occur
during final processing steps. Again, in CIC 2018’s In-
filtration class, several benign flows were duplicated and
included, exacerbating the previous issue. In contrast with
other datasets, CTU-13 provides highly granular labelling,
making it easier to discard mislabelled flows. Despite
this, some problems persist, such as OS updates labelled
as malicious adware and flows that appear to have been
accidentally filtered from the network capture.

Aside from black-and-white errors, NIDS datasets
are plagued by murky labelling, exacerbated by poor
documentation. Although better than other datasets, we
found discrepancies between the documentation [94] for
ISCX 2012 and the PCAPs. For example, HTTP DoS is
reportedly executed using Slowloris, which overwhelms
a server with incomplete HTTP requests. However, we
found no evidence of these partial requests; instead, the
attack consisted of generic GET requests.

Simulation Artefacts. Simulation artefacts can
affect an entire dataset. Consider UNSW NB15 whose
features include the hosts’ time-to-live values. This appears
to inadvertently fingerprint operating systems and in, say,
the Exploits class, the distribution of operating systems
among attacked machines differs significantly from that of
the machines receiving benign traffic. Consequently, this
highly dependent feature simplifies classification. The ratio
of TCP to UDP traffic between the benign/attack classes
causes similar issues. Subtle choices, such as attackers
targeting small webpages whilst benign users visit large
webpages can bias features. In CIC 17, this results in highly
discriminative total packet length features, even when
unrelated to an attack’s underlying behavior. Mistaken flow
calculation can also cause artefacts: in CTU-13 Scenario 4,
several hundred non-existent UDP flows with impossible
characteristics are recorded due to mistaken processing.
Alongside mislabelled NetBIOS traffic, these account for
99.9% of malicious UDP Attempt traffic.

Highly Repetitive. Highly Repetitive data under-
mines the ubiquitous train/validation/test pipeline. This pre-
vents building meaningful holdout sets and, consequently,
the generalisation abilities of ML classifiers, a primary
research goal, are not examined. Our analysis reveals



TABLE 8: Results of Heuristic Measures (- indicates indeterminate due to small class size, * indicates clash with
FTP-BruteForce, † indicates clash with LOIC, ‡ indicates clash with Background). We provide results for the primary
class of each CTU-13 scenario, measured by packet volume, with more detail in the Appendix.

Dataset/Class PDDC TCC WLC HDFC UGTC

UNSW NB15
Generic 0.98 0.92 0.0 1.0 0.98
Exploits 0.89 0.41 0.10 0.88 0.37
Fuzzers 0.93 0.6 0.52 0.66 0.51

DoS 0.91 0.48 0.12 0.90 0.78
Recon. 0.95 0.76 0.38 0.95 0.84

Analysis 0.93 0.54 0.21 0.89 0.77
Shellcode 0.97 0.95 0.57 0.69 0.0
Backdoor 0.91 0.48 0.0 0.91 0.82

Worms 0.94 0.46 0.60 0.78 0.0

ToN IoT
scanning 0.97 0.95 0.0 0.99 0.01

dos 0.99 0.97 0.0 0.98 0.03
ddos 0.99 0.98 0.0 0.97 0.12
mitm 0.83 0.85 0.27 0.73 0.56
xss 0.84 0.86 0.0 0.97 0.27

backdoor 1.0 1.0 0.31 1.0 0.0
injection 0.95 0.92 0.0 0.98 0.03

passwords 0.89 1.0 0.0 0.99 0.0
ransomware 0.83 0.91 0.05 0.84 0.0

Bot IoT
DDoS 0.86 0.5 0.0 0.98 0.0
DoS 0.87 0.37 0.0 0.99 0.0

Recon. 0.93 0.53 0.01 0.98 0.0
Theft 0.89 0.67 0.06 1.0 0.0

CTU-13
Neris 1 0.84 0.36 0.0 0.83 0.0
Neris 2 0.85 0.36 0.0 0.96 0.0
Rbot 1 0.98 0.99 0.18‡ 1.0 0.0
Rbot 2 0.87 0.7 0.0 0.0 0.98
Virut 1 0.94 0.67 0.0 0.8 0.0
Donbot 0.97 1.0 0.0 1.0 0.0
Sogou - - - - -
Murlo 0.96 0.84 1.0 0.87 0.0
Neris 3 0.9 0.97 0.0 0.87 0.0
Rbot 3 0.99 0.99 0.0 1.0 0.0
Rbot 4 0.98 0.96 0.01 1.0 0.0
NSIS 0.78 0.68 0.02 0.88 0.0

Virut 2 0.88 0.95 0.0 0.9 0.0

CIC-IDS 2017
Portscan 0.99 0.99 0.0 0.98 0.0

DoS Hulk 0.98 0.98 0.0 1.0 0.0
FTP-Patator 0.98 0.98 0.0 0.99 0.0
SSH-Patator 1.0 1.0 0.0 0.98 0.0

DDoS 0.98 0.94 0.0 0.99 0.0
Bot 0.98 1.0 0.01 1.0 0.0

Slowloris 0.97 1.0 0.0 0.98 0.0
Slowhttptest 0.88 0.53 0.0 0.96 0.0
GoldenEye 0.95 0.68 0.0 1.0 0.0

Infil. 0.92 0.65 0.81 0.75 0.0
Brute Force 0.99 0.93 0.06 0.91 0.0

XSS 0.78 0.48 0.35 0.93 0.0
SQL - - 0.63 - 0.0

Heartbleed - - 0.18 - 0.0

CIC-IDS 2018
Infil. 0.67 0.32 0.65 0.63 0.32
Bot 0.99 0.99 0.0 0.99 0.0

Hulk 0.98 0.99 0.0 1.0 0.0
Slowloris 0.83 0.89 0.0 0.99 0.0

SSH-Bruteforce 0.99 0.99 0.0 1.0 0.0
FTP-BruteForce 0.99 1.0 0.0 0.99 0.0

LOIC 0.96 0.99 0.0 1.0 0.0
LOIC-UDP 0.96 0.82 0.16† 0.99 0.0

HOIC 0.98 0.88 0.0 1.0 0.0
GoldenEye 0.93 0.99 0.0 1.0 0.0

SlowHTTPTest 0.99 1.0 0.56∗ 1.0 0.0
XSS 0.90 1.0 0.05 0.83 0.0
Web 0.77 1.0 0.21 0.79 0.04
SQL 0.86 0.85 0.21 0.77 0.0

ICSX 2012
BruteForce 0.99 0.99 0.02 0.96 0.0

SSH 0.98 1.0 0.0 0.93 0.0
nmap 0.93 1.0 0.04 0.78 0.02
IRC 0.96 1.0 0.0 0.70 0

Other 0.75 0.37 0.35 0.56 0.13

the extent of this issue, exemplified by UNSW NB15’s
Reconnaissance class. The primary protocol in this class
is Portmap at roughly 80.5% with very little variation
between flows. Similarly, 97.8% of malicious flows in
CTU-13’s Scenario 5 are related to a basic nmap scan.

Classifying volumetric attacks is straightforward. With-
out exception, DoS attacks were launched against static
targets. This design choice produce millions of near iden-
tical flows. This is particularly noteworthy in Bot IoT, as
only 0.00013% of traffic is benign, and the overwhelming
majority of attack traffic is volumetric. In Section 6.1,
we demonstrate how lack of diversity rewards overfitting
models without evaluating their generalisability.

When this smell coexists with other smells, it can be
masked, potentially misleading researchers into overesti-
mating the classification challenge presented by a dataset.
For instance, in CIC 17, the minority classes SQL Injection
and Heartbleed suffer from the mislabelled and artificial

diversity smells respectively. Remediating these issues, it
is possible to achieve perfect accuracy classifying these
attacks even with simple models.

Often, data was not adequately audited. Launching
attacks against closed ports is common, including the
Ton IoT backdoor, Bot IoT Theft and CIC 18 FTP-
Bruteforce classes. Attacks were also launched against
secure services, such as CIC 17’s DoS Goldeneye and
CIC 18’s XSS classes. Although detecting failed attacks
is potentially good, these should be explicitly labelled
as failures. During our analysis in Section 3 we did not
encounter a single paper that appeared to be aware that
they were working with failed attack data, leading to overly
optimistic interpretations of their results.

5.2. Automated Analysis

In Table 8, we report the results of our heuristic
measures for 68 classes, bolding any results that we



feel indicate serious data design issues. We also run our
measures on the multi-dimensional ODDS collection [82],
a set of tabular benchmark datasets for anomaly detection
(including data taken from KDD Cup). The ODDS datasets
are mostly non-synthetic, providing a comparison between
synthetic network data and real-world data. We present
these results in Table 9.
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Figure 2: Overlap of Shellcode class with Benign traffic in
UNSW NB15. We perform principal component analysis
to represent each class in two dimensions.

Mislabelled. Table 8 shows that a minority of
classes exhibit significant labelling issues, according to
our WLC and UGTC measures. Although complex data
could cause points to lie on the decision boundary and lead
to high scores, our manual analysis refutes this. Instead,
mislabelled and contextually benign data cause this overlap,
demonstrated in Figure 2, where UNSW NB15’s Shellcode
and Benign classes coincide heavily due to unrelated
DNS traffic. This also occurs in CIC 17’s SQL injection
class, where many flows consist of simple, benign GET
requests. Even simple tests, such as our UGTC , highlight
severe issues with unclear attack classes. For instance, in
UNSW NB15, common sense checks would expose the
Generic class’s issues, which also predominantly consists
of DNS records. However, we also note that our set
of BG Ports generalised poorly to CTU-13. As a result,
naive application of our UGTC measure produced a false
positive rate of approximately 20%, as CTU-13 contains
malicious DNS and ICMP traffic.

Highly Repetitive. The results of PDDC show
that the attack traffic of these datasets have low diversity.
Worryingly, many classes achieve extremely high TCC

scores, implying that classification is equivalent to iden-
tifying a small number of flows or, potentially, a single
flow. Figure 3 shows an example of this problem.

Such patterns severely degrade the ubiquitous train/vali-
dation/test pipeline, preventing the formation of meaningful
holdout sets and favoring models that overfit. Consequently,
the generalization abilities of ML classifiers — a crucial
aspect of NIDS research — are not effectively examined.

Simulation Artefacts. According to our HDFC

measure, highly dependent features are ubiquitous across
the datasets tested. Our one-feature baseline frequently sep-
arated attack classes from the background traffic perfectly.
Near-perfect scores were also common. Upon examining
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Figure 3: CSC of two clusters of CIC 18 SSH-BruteForce
class, partially launched against a closed port. Almost all
sampled flows are identical in Cluster A.

these features, we observe few connections to the attack’s
underlying behavior. In CIC 18, our baseline achieves a
near-perfect F1 score classifying DoS Hulk traffic using
the FWD Init Win Bytes feature. This attack and feature
also appears in CIC 17. However, here, our FWD Init Win
Bytes random forest fails to correctly classify a single DoS
Hulk flow. This discrepancy highlights the arbitrary nature
of the connection between the DoS Hulk class and the
FWD Init Win Bytes feature.

Measuring the impact of artefacts that increase diversity,
such as our artificial diversity smell, is difficult. A notable
example exists in Bot IoT and CIC 17, where the rate of
TCP retransmissions exceeds 34% and 15%, respectively.
In standard traffic, this rate typically does not exceed
3% [37]. This disparity introduces unrealistic variability
in the flow’s features, artificially complicating the data.

ODDS Dataset Collection. For comparison, we
run our non-network specific metrics — WLC , PDDC ,
TCC and HDFC — on the ODDS collection. We limit
our analysis to datasets with more than 2500 background
samples7. The complexity of these datasets varies widely.
State-of-the-art methods achieve F1 scores between ∼ 0.2
and 1.0 [45], [64], [93]. Our results are collected in Table 9.

With the exception of the shuttle dataset and some
WLC measures, none of the ODDS datasets attain the
extreme scores of our NIDS datasets. We emphasise that
these measures are heuristics and, without the original data
to analyse, we can’t draw conclusions based on features
alone. For instance, our results for WLC correlate inversely
with anomaly detection score [93] and the mammography
or speech datasets may simply be challenging benchmarks.
However, contrasting the scores attained on these non-
synthetic datasets and our synthetic NIDS datasets, we see
a marked difference: on a class-by-class basis, our metrics
flags issues at a rate three times higher on the NIDS
datasets than the ODDS collection. Strikingly, the best
scores attained by our metrics occur on ODDS datasets.

6. Recommendations

We conclude with some recommendations for using
NIDS data, in Sections 6.1–6.2, and developing NIDS
datasets, in Section 6.3. Whilst building a ‘perfect’ dataset
is ambitious, these suggestions could improve data quality
and minimise design issues.

7. We also exclude the Mulcross dataset (as the official link was dead
at the time of this experiment) as well as the KDD Cup based datasets.



TABLE 9: Results of Heuristic Measures on ODDS

Dataset/Measure PDDC TCC WLC HDFC

annthyroid 0.89 0.51 0.6 0.88
cardio 0.81 0.37 0.12 0.81
cover 0.91 0.31 0.0 0.92

mammography 0.92 0.67 0.3 0.78
mnist 0.53 0.0 0.08 0.77

optdigits 0.86 0.06 0.0 0.49
pendigits 0.93 0.68 0.02 0.56
satellite 0.95 0.81 0.06 0.8
satimage 0.88 0.75 0.07 0.94
shuttle 0.98 0.95 0.0 0.98
speech 0.80 0.0 0.3 0.53
thyroid 0.85 0.3 0.19 0.92

6.1. Testing for Generalisation Explicitly

The oft repeated advantage of machine learning in secu-
rity is that models can generalise to unseen attacks. Whilst
somewhat straightforward in other domains [4], [104], this
goal is poorly defined in intrusion detection: along what
axes should models generalise? What does it mean for an
attack to be ‘different’ to another? If generalisation is the
goal, papers should explicitly define success conditions
and datasets should be used in manner that supports this
aim. Instead, most work relying on these datasets measure
generalisation via a typical train/test pipeline. Given the
design choices of the analysed NIDS datasets, this is often
equivalent to training and evaluating models on flows from
the same attack, a form of data leakage. For the reasons
outlined in this paper and others [23], this is not enough
to demonstrate model generalisation.

Given existing NIDS data design, we recommend
avoiding using training and test attack data from the
same class and dataset, as recommended previously [8],
[23], [83] and undertaken by some work [11]. Evaluating
models based on their cross-class/dataset performance
aligns more closely with the intended use case of machine
learning-based NIDS: generalising to unseen attack data.
Even better, by using prior work in synthetic NIDS data
generation [28], [29], [58], it is possible to test whether
model architectures can generalise to arbitrary attack
traffic. Using DetGen [28], we generate malicious data to
show how synthetic data can be used like this.

Consider detecting DoS traffic to demonstrate gener-
alisation between different network bandwidths and web
page sizes. Based on our analysis of CIC 17, the DoS
Hulk class had poor data diversity with highly dependent
features due to the fixed network conditions and target
web page. We generate arbitrary DoS data by randomising
webpage size — between 1 and 10MB — and attacker
bandwidth — between 1Mbps and 50Mbps. In contrast to
CIC 17’s single example, we collect volumetric DoS attack
data for 60 combinations of bandwidth limit and web page
size, which we inject into CIC 17. Although this process is
artificial, it is similar to domain randomisation in computer
vision, where arbitrary synthetic data has been leveraged
to improve model generalisation [103]. The increase in
diversity is reflected in our heuristics: compared with CIC
17’s DoS Hulk class, this process produces data that fares
considerably better, scoring 0.89 and 0.62 on our PDDC

and TCC measures, respectively.
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Figure 4: Overlap between train/test sets on CIC 17 via
standard evaluation pipeline (Original) vs. our bespoke
data (New). Note that the train/test sets of CIC 17 overlap
almost entirely.

By producing such traffic, researchers can query a far
larger breadth of an attack’s possible data distributions
during their testing and evaluation. Critically, this greater
test data diversity allows for stronger generalisation claims,
better probing of model failures — as shown by Clausen
et al. [27] — and weakens the efficacy of naive application
of flow statistics, as we show in Figure 4. Figure 4 also
shows the inability of a standard train/test split on an
unmodified CIC 17 to evaluate generalisation. In contrast,
by considering training and test data from different runs of
our generation process, naive application of flow statistics
results in considerable less overlap between the sets.

6.2. Improving Feature Selection
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Figure 5: Heatmap of baseline model’s F1 scores as simple
perturbations are applied to the Total Source Bytes and
Total Destination Bytes features. Perfect score is achieved
in bottom left (unperturbed). Feature values normalised
between [0, 1].

In general, we caution against directly using the feature
sets provided with these datasets. It is widely understood
that feature engineering is a vital step in the machine learn-
ing pipeline. However, NIDS research often completely
avoids this process, instead using the provided features



by default. These features rarely capture dependencies
between flows, necessitating sequential machine learning
methods, such as those investigated by Corsini et al. [31].
As far as we are aware, there is no established methodology
for associating features with attacks. Even recent attempts
to standardise the feature sets amongst NIDS datasets
typically focus on the feasibility of collecting such features,
rather than the relationship between the chosen features
and attacks [11], [85].

As highly dependent features can easily occur via poor
feature selection, high F1 scores are not enough to validate
a NIDS model’s performance, as highlighted by Jacobs
et al. [52]. We recommend justifying model performance
— using techniques described by Nadeem et al. [77] —
connecting important features to an attack’s properties
across multiple diverse interactions to validate model
efficacy. Papers should explicitly state this connection. If a
feature is inexplicably highly discriminative then perhaps
it should be discarded.

Following Geirhos et al.’s suggestion that adversar-
ial samples are useful for understanding such shortcut
features [42], we recommend researchers visualise egre-
giously dependent features by analysing a baseline model’s
‘fragility’ — i.e., the ease with which unguided perturba-
tions cause samples to cross the decision boundary. We
demonstrate this for the HTTPWeb class of ISCX 2012 in
Figure 5. A simple random forest achieves a near-perfect F1
score separating HTTPWeb from the background. However,
the most important features — Total Source Bytes and Total
Destination Bytes — are attacker controlled, unrelated
to the attack specification and, thus, potentially shortcut
artefacts. Unguided perturbations on these features quickly
reduce the model’s F1 score without changing the semantic
properties, indicating shortcut learning has taken place.

6.3. Towards Better Dataset Design

It is an ongoing process to consider how our smells
should be best addressed when creating a dataset. How-
ever, based on our analysis, we can recommend some
improvements.

Whilst the advice in Sections 6.1 & 6.2 is primarily
geared towards dataset users, we believe they are also
relevant for dataset creators. Namely, creators should
include multiple diverse test scenarios for each class,
whilst documenting their differences. For instance, tests
sets may differ according to spacial or temporal factors,
as in TESSERACT [4]. Creators should also highlight
potential shortcut artefacts via analysis of baseline models
trained naively on flow statistics.

A well-formed dataset should focus on a specific class
of attacks or tactics, drawing on vulnerability and adversary
analysis [46], [67], [98]. Many published classifiers have
lofty ambitions, with model architectures trained and
evaluated on all attacks or anomalies within a dataset,
instead of a more focused goal. We believe this is heavily
influenced by the design of current benchmark datasets,
which often contain several disconnected attacks. We
also recommend that datasets should include the normal
usage of the service being attacked. Otherwise, models
may simply be learning incidental aspects of the attack
generation process, rather than distinguishing normal and
abnormal behaviours.

In NIDS, there is a large gap between the feature
and problem spaces. We believe this contributes heavily
to labelling issues. For, say, images, converting features
into their original source data is trivial and researchers
can inspect data easily. In comparison, locating flows in
PCAPs is painful. Berkeley Packet Filters [72] can filter
PCAPs in a flexible manner and useful filters that isolate
malicious from background traffic or separate network
services would allow researchers to bridge this gap and
should be a critical part of a NIDS dataset, alongside
documentation detailing the source of the traffic. We note
that CTU-13 appeared to be labelled similarly, simplifying
our analysis process massively.

7. Related Work

Investigating issues with NIDS data is a well-
established area and we build on many prior works. There
are several NIDS surveys and overviews that highlight
issues: Kenyon et al. [53] critique poor data provenance and
simplistic synthetic models; Catillo et al. [24] catalogue
several questionable practises in NIDS data, including
shortcut artefacts and labelling issues; Apruzzese et al. [9]
et al. provide a pragmatic assessment of machine learning
for NIDS and recommend using multiple datasets for
evaluation; Cordero et al. [29] provide a dataset overview
when presenting their synthetic generation framework.
These works typically discuss issues at a high level, rarely
highlighting specific problems with specific datasets or
quantitatively measuring issues as our work does. In con-
trast, Jacobs et al. [52] identify specific shortcut artefacts
in CIC 17 and UNSW via a process similar to HDFC .

Other works provide more specific but limited NIDS
dataset analysis. Analyses of single datasets exist for old,
outdated datasets, such as Tavalee et al.’s criticism of KDD
Cup 1999 [3], [101]. In recent criticism, Liu and Engelen
et al. [39], [66] provide analyses of CIC 17/18 and discuss
their shortcomings, however, the primary contribution of
their work is the discovery of miscalculated flow statistics
and labelling issues. Peterson et al. [81] provide a limited
overview of pitfalls in Bot IoT and Catillo et al. [23]
critique public datasets, centering their discussion on the
poor transferability of classifiers between datasets.

Despite this prior research, to our knowledge, this is the
first paper to present a methodology for uncovering design
problems with NIDS datasets, to provide indicators of such
issues and to provide a systematic overview of the pitfalls
and problems that may be encountered by those who use
these datasets. Previously, dataset evaluation frameworks
such as that proposed by Gharib et al. [43] consist of
simple checks, with no guarantee of the quality of the
data that satisfy these criteria. NIDS datasets surveys often
propose ways of mitigating problems, such as Ring et
al. [83], who suggest using multiple datasets to evaluate
performance. Again, these surveys rarely highlight specific
problems as our work does.

Similar analyses do exist in other domains, such as time-
series anomaly data [110] and image classification [104], as
well as more general analyses of data quality in machine
learning pipelines [84] or machine learning applied to
security [12]. We also note that the term ‘data smell’ [95]
is already used to refer to minor problems with datasets,
such as formatting issues.



8. Caveats & Limitations

Despite these critiques, we emphasise that imperfect
NIDS datasets are still useful tools for researchers and
can be completely sufficient for certain tasks. For example,
based on their usage of CIC 17, we see little reason why
the covert communication channels of Chen et al. [26]
or the OS fingerprinting of Holland et al. [51] would be
impacted by bad data design smells. For NIDS specifically,
these datasets do contain valid attack traces which can
be properly utilised by research. However, we maintain
that thorough understanding is needed to assess a dataset’s
suitability for a given task.

Whilst we try to be as thorough as possible, our analysis
may be limited. Some of our criteria are inherently sub-
jective, reflecting the heterogeneity of these datasets. It is
difficult to formulate strict criteria that generalise across all
current NIDS datasets, and our suggested heuristics must
be applied sensibly to prevent false positives. Whilst we
assigned multiple authors to cross-reference our findings,
we did not contact the dataset authors for verification,
performing this analysis ourselves.

9. Conclusion

Via an in-depth analysis of seven popular network
intrusion datasets, we identify six data design smells. We
find that insufficient data auditing is general across the
field of network intrusion research and that these smells
could severely bias downstream research.

We hope that the research community takes these issues
seriously. Across many facets, synthetic data can provide
advantages over real-world data such as complete ground
truths, high generative control and repeatability. None of
these are utilised by the current crop of datasets and static
datasets are still the de facto standard. Further research
into producing quality benchmark datasets via synthetic
data generation techniques is one potential approach to
ameliorate these issues.

Our goal was to inform researchers about dataset
contents and limitations. Moreover, our work provides
insight into the choices necessary to improve NIDS dataset
design. By shedding light on these issues, we hope to
stimulate discussions and encourage the community to
reassess the suitability and reliability of these datasets for
network intrusion research. The paucity of quality, public
data is a major problem for the research community as a
whole and continued critical evaluation of network data
can only be good.

Data Availability

Our heuristics tooling, alongside our experiment note-
books, are available at https://github.com/DataBadSmells.
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A. Treatment of CTU-13
Due to the granular labelling of CTU-13, treating each

label as a separate class, as we do for the other datasets, is
infeasible. Instead, we combine conceptually similar labels
based on their protocol and purpose, determined via the
provided labels. For instance, for Neris 2, we combine all
malicious, established TCP connections into a single class,
reducing 73 labels — many associated with only one flow
— to a single class. The exact combinations chosen are
available in the accompanying GitHub repo. In Table 8, we
provide our results for the primary attack associated with
a scenario, based on volume. We describe the associated
malicious behaviours in Table 10.

CTU-13 provides a large amount of Background traffic,
a subset of which has been filtered and labelled as Normal
traffic. In the main body, we use this Normal traffic for
our comparative measures, WLC and HDFC . However,
in some cases, based on CTU-13’s granular labelling, it is
apparent that the Background traffic could provide a more
challenging classification task, impacting these measures.
Where applicable, we rerun our comparative tests using
the Background flows. We present our results in Table 11.
Our other measures are not affected by this change.

http://jianying.space/conference-ranking.html
http://jianying.space/conference-ranking.html


Class Attack

Neris 1 Injected Ad Traffic
Neris 2 Injected Ad Traffic
Rbot 1 PortScan
Rbot 2 UDP Flood
Virut 1 SMTP Proxy
Donbot Attempted TCP Spam

Class Attack

Murlo UDP C&C
Neris 3 Injected Ad Traffic
Rbot 3 ICMP Flood
Rbot 4 ICMP Flood
NSIS UDP C&C

Virut 2 SMTP Proxy

TABLE 10: Scenario and associated malicious behaviour.

Class WLC HDFC

Neris 1 1.0 0.73
Neris 2 0.95 0.74
Rbot 1 0.18 1.0
Rbot 2 0.03 1.0
Donbot 0.01 1.0

Class WLC HDFC

Murlo 1.0 0.5
Neris 3 0.89 0.69
Rbot 3 0.95 1.0
Rbot 4 0.01 1.0
NSIS 1.0 0.76

TABLE 11: Comparative measures with Background traffic.

B. Paper Overview

For our paper overview selection, we employed the
following criteria:

• The paper uses at least one of the 7 datasets
that we have covered here. Note that we looked
through papers that cited the dataset’s official paper,
potentially missing incorrect citations.

• The aim of the paper is to detect or classify
malicious activity found in one of the 7 datasets, or
perform some kind of adversarial attack (e.g. adver-
sarial examples, evasion attacks) against a model
trained on one of the 7 datasets. For this reason,
we excluded systematisations of knowledge [9],
[10], [77] and papers that criticise other aspects
of Machine Learning approaches for Network
Intrusion Detection [7], [38]

• The paper was published at one of the venues
listed in Table 12. As mentioned at the beginning
of Section 3, we expanded our initial list of 7 top
security target venues to increase dataset coverage.

Acronym Venue Full Name

USENIX USENIX Security Symposium
S&P IEEE Symposium on Security and Privacy
CCS ACM SIGSAC conference on computer and communica-

tions security
NDSS Network and Distributed System Security Symposium
EuroS&P IEEE European symposium on security and privacy
ACSAC Annual Computer Security Applications Conference
AsiaCCS ACM Asia conference on computer and communications

security
SAC ACM/SIGAPP Symposium on Applied Computing
CNS IEEE Conference on Communications and Network Se-

curity
DIMVA Detection of Intrusions and Malware, and Vulnerability

Assessment
InfoCOM IEEE International Conference on Computer Communi-

cations
WWW World Wide Web Conference
CIKM Conference on Information and Knowledge Management
KDD ACM SIGKDD Conference on Knowledge Discovery and

Data Mining

TABLE 12: List of venues considered for our selection of
papers that use one of the 7 NIDS datasets treated in this
work.

We evaluated dataset(s) usage as follows:

• Feature Variation (FV) - We marked the assumption
as present if the paper does not mention any
discussion or analysis of the variability (or lack
thereof) of features in a class. This also extends to
discussion or analysis on whether the distribution
of features within a certain malicious class is,
due to a lack of intra-class variation, significantly
different from that of benign traffic, rendering the
classification task trivial.

• Attack Variation (AV) - We marked the assumption
as present if the paper does not mention any
discussion or analysis of the number of distinct
interactions in a class, whether the attack was
repetitive in nature, or whether the attack was set
up in a very simplistic way.

• Highly Dependent Features (HDF) - We marked
this category as present if the paper does not
perform any semantic post-hoc analysis on the most
important features according to their trained model,
namely whether these features are realistically able
to characterise an attack or whether the feature’s
value is merely spuriously correlated to a certain
attack. In order to mark this category as not present,
we required that the paper’s semantic analysis
is built upon expert knowledge, which usually
necessitates some level of manual PCAP analysis.

• Wrong labels or Unclear Ground Truth (W/U) -
We marked the assumption as present if papers
accepted the dataset’s labels without questioning
the validity of the ground truth. We marked it as
not present if the paper performs PCAP analysis
to verify the ground truth (e.g. inspecting their
model’s false positives and false negatives).
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Figure 6: Plot of venue counts in paper overview.
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Figure 7: Plot of dataset citation counts in paper overview.
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