
Evading stepping-stone detection with enough chaff

Henry Clausen1, Michael S. Gibson2, and David Aspinall1,3

1 University of Edinburgh, UK {henry.clausen, david.aspinall}@ed.ac.uk
2 BT Applied Research, Ipswich UK

michael.s.gibson@bt.com
3 The Alan Turing Institute, London UK

Abstract. Stepping-stones are used extensively by attackers to hide their identity and
access restricted targets. Many methods have been proposed to detect stepping-stones
and resist evasive behaviour, but so far no benchmark dataset exists to provide a fair
comparison of detection rates. We propose a comprehensive framework to simulate re-
alistic stepping-stone behaviour that includes effective evasion tools, and release a large
dataset, which we use to evaluate detection rates for eight state-of-the-art methods. Our
results show that detection results for several methods fall behind the claimed detection
rates, even without the presence of evasion tactics. Furthermore, currently no method is
capable to reliably detect stepping-stone when the attacker inserts suitable chaff pertur-
bations, disproving several robustness claims and indicating that further improvements
of existing detection models are necessary.

1 Introduction

The problem of stepping-stones detection (SSD) has been studied for over 20 years,
yet the body of literature fails at providing an informative overview of the detection
capabilities of current methods. In this paper, we set out to do just that by evalu-
ating and comparing a number of selected state-of-the-art approaches on a new and
independently generated dataset.

In a stepping-stone attack, malicious commands are relayed via a chain of compro-
mised hosts, called stepping-stones, in order to access restricted resources and reduce
the chance of being traced back. Real-world attacks using stepping-stone chains include
Operation Aurora [19], Operation Night Dragon [1], the Black Energy [13] attack on the
Ukrainian powergrid, and the MEDJACK [3] attack where medical devices were used
as stepping-stones. The European Union Agency for Cybersecurity currently classifies
stepping-stone attacks as one of the top ten threats to IoT-devices [8].

The detection of interactive stepping-stones is challenging due to various reasons.
Attackers are not constrained to specific proxy techniques and can obfuscate relayed
traffic with evasive tactics. Packet-based methods are computationally expensive while
false-positives can render a method unusable. Like many intrusion attacks, stepping-
stones are rare and there exist no public datasets, leading researchers to evaluate their
methods on self-provided private data, which makes a direct comparison of the achieved
results impossible.

In this work, we provide the following contributions:

1. We describe a framework to generate data that represents realistic stepping-stone
data without bias to particular detection mechanisms. Our framework is scalable



2 H. Clausen et al.

and capable of generating sufficient variety in terms of network settings and con-
ducted activity.

2. We release a large and comprehensive dataset suitable for the training of machine-
learning-based methods and in-depth performance evaluation. To our knowledge,
this is the first public SSD dataset.

3. We re-implemented eight SSD methods that represent the current state-of-the-art
and provide a fair evaluation of their capabilities in a number of settings.

4. Our evaluation shows that while most methods can accurately detect command
propagation, detection rates plummet when appropriate chaff is inserted. This result
disproves the claims made for multiple methods that their detection rates are robust
against chaff perturbations.

The rest of the paper is organised as following: Section 1 provides an introduc-
tion and background to the problem of stepping-stone detection. Section 2 discusses
the particular design of the data generation framework. Section 3 presents the dataset
arrangement in terms of background and attack data and discusses evaluation meth-
ods. Section 4 discusses the selection process, properties, and implementation of the
eight SSD methods that we implemented for evaluation. Section 5 discusses the results
achieved by the implemented methods on the given data. Section 6 discusses related
work.

1.1 Background

Stepping-stones were first conceptualised by Staniford-Chen and Heberlein in 1995
[18]. In an interactive stepping-stone attack, an attacker located at the origin host,
called host O, sends commands to and awaits their response from a target, host T.
The commands and responses are proxied via a chain of one or more intermediary
stepping-stone hosts, called host S1, . . . , SN , such as depicted in Fig. 1. Once a host Si
is brought under control, it can be turned into a stepping-stone with simple tools and
steps. Some of the most common set-ups are port forwarding via SSH-tunnels, setting
up a backpipe with NetCat, or using metasploit to set up a SOCKS proxy [9].

Fig. 1. Depiction of an exemplary stepping-stone chain.

Stepping-stone detection (SSD) is a process of observing all incoming and outgoing
connections on a particular host hi and determining whether it is used to relay com-
mands. This is generally done with no prior information about any other stepping-stone



Evading stepping-stone detection with enough chaff 3

hosts S1, . . . SN or the endpoints O and T . A popular approach to SSD is to compare
connections pairwise to identify whether they carry the same information. To avoid
detection, several evasive flow transformation techniques exist that aim at decreasing
observable correlation between two connections in a chain.

– Packet transfer delays/drops: An attacker can choose to apply artificial delays
to forwarded packets, or drop certain packets to cause retransmission, in order
to create temporal disparity between connections. Researchers often assume the
existence of a maximum tolerable delay [7].

– Chaff perturbations: Chaff packets do not contain meaningful content and are
added to individual connections in a chain without being forwarded. Adding chaff
perturbations can be used to shape the connection profile towards other traffic
types.

– Repacketisation: Repacketisation is the practice of combining closely adjacent
packets into a larger packet, splitting a packet into multiple smaller packets, or
altering the packet content to change observed packet sizes and numbers.

In our evaluation, we set out to understand the effect of different evasive methods
on detection rates.

2 Data generation setting

2.1 Containerisation

To ensure reproducibility, we rely on containerisation. A container is a standard unit of
software that runs standalone in an isolated user space in order to remove platform de-
pendencies and ensure repeatability. The use of containerisation for this project follows
a traffic generation paradigm designed for machine learning, introduced by Clausen et
al. [4].

2.2 Simulating stepping stones with SSH-tunnels and Docker

We want to capture data not only from one interaction in a fixed stepping-stone chain,
but from many interactions and chains with different settings. For that, we run multiple
simulations, with each simulation establishing a stepping-stone chain and controlling
the interactions between host O and host T .

A simulation begins with the start-up of the necessary containers and ends with
their takedown. We simulate host O, host T , and host S1, . . . , Sn with SSH-daemon con-
tainers. To establish a connection chain, we connect these containers via SSH-tunnels,
with the first tunnel forwarding a port from host O to host S1, which is then forwarded
to host S2 by the second tunnel etc. As mentioned by Gordon Fraser [9], this is one of
the most common pivoting methods for attackers. Traffic is captured both at host T
and host Sn, which acts as the final stepping-stone in the chain. Fig. 2 depicts a packet
transfer via an exemplary chain.



4 H. Clausen et al.

Fig. 2. Depiction of the way a command is packetised, encrypted, and travels through the different
stages of the stepping-stone chain via SSH-tunnels.

Simulating interactive SSH-traffic In order to generate enough data instances
representing interactive stepping stone behaviour, we automatised the communication
between host O and host T . For each simulation, we generate a script which passes
SSH-commands from host O to host T .

To mimic a user’s actions, we compiled a command database which consists of
common commands and their usage frequency, similar to [24].Commands are drawn
randomly according to their usage frequency and concatenated to a script. Commands
can either be atomic, such as ”ls-la” or ”pwd”, or compound commands such as in-
putting text to a file. Command inputs are randomised appropriately when a compound
command is drawn. A scripts ends once the End -command is drawn at random from
the command catalogue.

To simulate human behaviour that is reacting to the response from host T , all com-
mands are separated by sleep-commands for time t, which is drawn from a truncated
Pareto-distribution. Paxson et al. [16] have shown that interpacket spacings correspond-
ing to typing and ”think time” pauses are well described by Pareto distributions with
a shape parameter α ≈ 1.0.

Simulating different network settings Hosts in a stepping-stone chains can be
separated by varying distances. Some may sit in the same LAN, while others may
communicate via the Internet from distant geographical locations, which influences the
round-trip-time, bandwidth, and network reliability.

To retard the quality of the Docker network to realistic levels, we rely on the
emulation tool NetEm, which allows users to artificially simulate network conditions
such as high latency, low bandwidth, or packet corruption/drop [10]. We set the network
settings and bandwidth limit for each host container individually before each simulation
to allow hosts to experience different settings.

2.3 Evasive tactics

Adding transfer delays To simulate evasive behaviour, we add transfer delays to for-
warded packets. This method, often called jittering, can destroy time-based watermarks
in packet flows and help decrease observable correlation between two connections. The
delays are added using NetEm. We draw delays from a uniform distribution, covering
the interval [0, δD]. This particular choice has been suggested by Padhye et al. [15] in
order to mimic the interarrival distributions of streaming services. The value of δD is



Evading stepping-stone detection with enough chaff 5

fixed before each simulation and can be varied to allow for different degrees of packet
jittering. We explore values for δD up to 1500 ms, with values above leading to unstable
communication. Results in Section 5 show that this is enough to render watermarking
methods and most flow correlation methods obsolete.

Adding chaff perturbation We insert chaff packets without actual information to
individual connections in the chain using a Netcat client. To add and filter packets in
a connection, we open additional ports in each SSH-tunnel that are however not for-
warded through the entire chain. Padhye et al. [15] suggest to generate chaff that mimics
the flow characteristics of streaming services to both spread the added perturbations
evenly across the connection and increase the difficulty of detecting the perturbation
itself. For this, packet sizes are drawn from a truncated Lognormal-distribution with
mean µC , while transmission intervals are drawn from a uniform distribution that cov-
ers the interval [δC/2, δC ] to mimic a constant packet flow. By adjusting δC , we can
control the amount of chaff sent.

Repacketisation By design, SSH-tunnels perform repacketisation along with re-encryption
and independent packet confirmations.

Fig. 3. Depiction the simulation setup for each host in the chain.

3 Evaluation data

We want to look at a variety of attack scenarios to highlight the strengths and weak-
nesses of different SSD approaches. We created three main attack datasets that contain
different forms and amounts of evasive behaviour, and a smaller dataset to highlight
the influence of different chain lengths.

To present a valuable false positive test, we provide three datasets with benign
background traffic. The first contains general real-world traffic, while the second and
third contain benign data that bears similar traffic characteristics as the generated
attack data.

3.1 Stepping-stone data

We create our main datasets using a chain of four stepping-stones S1, S2, S3, and S4. We
subdivide into three datasets: We first capture data without transfer delays and chaff



6 H. Clausen et al.

perturbations in dataset BA (baseline attack). We then capture data once with added
transfer delays with varying δD to control delays in dataset DA (delay attack), and
once with added chaff perturbations of varying δC in dataset CA (chaff attack). Each
dataset contains 30.000 connection pairs. We furthermore create a smaller dataset CL
(chain length) with differing numbers of stepping-stones (1,3,5, and 8 jumps) without
transfer delays and chaff perturbations.

3.2 Benign data

We include real-world traffic traces, taken from the CAIDA 2018 Anonymized Internet
Traces dataset [2], as overall background traffic. This data contains traces collected from
high-speed monitors on a commercial backbone link, and is often used for research on
the characteristics of Internet traffic.

To sufficiently test for false-positive, we also need to include benign traffic that
has similar characteristics to the attack traffic and was generated in a similar network
environment. We created a set of interactive SSH-connections that communicate di-
rectly between the client and the server without a stepping-stone. We follow the same
procedure as described in Section 2.2.

Since we generate perturbations with multimedia streams characteristics, we addi-
tionally want to test for false-positives against actual multimedia stream traffic. For
that, we captured traffic from a Nginx-server streaming randomised video to a client.

Label Nr. of conn. Purpose

Attack data

set BA 30.000 Baseline attack data without evasion tactics
set DA 30.000 Inclusion of delays with varying δD
set CA 30.000 Inclusion of chaff with varying δC
set CL 40.000 Data from chains of different lengths, no evasion tactics

Background data
CAIDA 60.000 General background data
SSH 20.000 Background data similar to attack commands
Multim. 20.000 Background data similar to chaff perturbations

Table 1. Summary of different components in our evaluation data.

We merge the three datasets to create our benign background dataset, with the
CAIDA part containing 60.000 connection pairs, while the other two each contain
20.000 connection pairs. The amount of SSH traffic and multimedia streams in this
setting is inflated from a realistic setting (up to 0.2% of flows for SSH and up 3% for
video streaming [20]) to highlight the strengths and drawbacks of SSD methods, which
we consider in the evaluation. In Section A, we analyse false-positives for each dataset
individually. Table 1 summarises the different parts in our evaluation data.

3.3 Evaluation methodology

To create a fair playing field for the selected SSD methods, we only look at connections
that exchange more than 1500 packets and exclude shorter connections from both the
data. The number of packets necessary for detection should ideally be a low possible to



Evading stepping-stone detection with enough chaff 7

enable early detection. The chosen number of 1500 packets seems like a suitable minimal
limit since all of the selected methods are designed to make successful detection with
300-1500 packets. Furthermore, there were no connections with less packets in the
stepping-stone dataset.

True stepping stone connections are rare compared to benign ones, making their
detection an imbalanced classification problem. An appropriate evaluation measure for
imbalanced data are false positive and false negative rates as well as the Area-under-
ROC-curve (AUC) for threshold-based methods.

4 Selected SSD methods and Implementation

A range of underlying techniques exist for SSD, and we try to include approaches from
every area to create an informative overview and highlight strengths and weaknesses.
We surveyed publications to create a collection of SSD methods. We started with the
publications from surveys [17, 21], and then added impactful recent publications found
via Google Scholar4. From here, we selected approaches based on the following criteria:

1. The achieved detection and false positive rates claimed by the authors,
2. and whether the model design shows robustness against any evasion tactics as

claimed by the authors.
3. We always selected the latest versions if a method has been improved by the authors.

Table 2 contains a summary of the included methods. Especially for traditional
packet-correlation as well as robust watermarking and anomaly-based methods, there
has been little developments since the early 2010s. We labelled each method to make
referring to it in the evaluation easier.

Category Approach TP FP Robustness Label

Packet-corr. Yang, 2011 [26] 100% 0% jitter/< 80% chaff PContext

Neural networks
Nasr, 2018 [14] 90% 0.0002% small jitter DeepCorr
Wu, 2010 [23] 100% 0% - WuNeur

RTT-based
Yang, 2015 [27] not provided 50% chaff RWalk

Huang, 2016 [12] 85% 5% - Crossover

Anomaly-based
Crescenzo, 2011 [5] 99% 1% jitter/chaff Ano1
Huang, 2011 [11, 6] 95% 0% > 25% chaff/ > 0.2s jitter Ano2

Watermarking Wang, 2011 [22] 100% 0.5% < 1.4s jitter WM
Table 2. Summary of included SSD-methods along with the claimed true positive and false positive
rates and evasion robustness by the corresponding authors. We added labels to each method for later
reference.

PContext, 2011 Yang et al. [26] compare sequences of interarrival times in connection
pairs to detect potential stepping-stone behaviour. For that, the contextual distance of
a packet is defined as the packet interarrival times around that packet. The authors

4 keywords “connection”, “correlation” “stepping-stone”, “detection”, “attack”, “chaff perturbation”



8 H. Clausen et al.

focus on Echo-packets instead of Send -packets to resist evasion tactics.The authors
evaluate their results with up to 100% chaff ratio with 100% detection rate.

WuNeur, 2010 Wu et al. [23] propose a neural network model based on sequences of
RTTs, which are fed into a feed-forward network to predict the downstream length of
the chain. The network itself only contains one hidden layer and achieves good results
only if RTTs are small, i.e. when the stepping-stone chain is completely contained
within one LAN-network.

DeepCorr, 2018 Nasr et al. [14] train a deep convolutional neural network to identify
connection correlation from the interarrival times and packet sizes in each connection.
The trained network is large with over 200 input filters, and consists of three convo-
lutional and three feed-forward layers. On stepping-stones, the authors achieve a 90%
detection rate with 0.02% false positives.

RWalk, 2015 Yang et al. [27] combine packet-counting methods and RTT mining
methods to improve detection results from [25]. THe model resists chaff perturbation
by estimating the number of round-trips in a connection via packet-matching and clus-
tering to determine if the connection is being relayed.

C-Over, 2016 Huang et al. [12] use the fact that in long connection chain, the
round-trip-time of a packet may be longer than the intervals between two consecutive
keystrokes. This will result in cross-overs between request and response, which causes
the curve of sorted upstream RTTs to rise more steeply than in a regular connection.

Ano1, 2011 Crescenzo et al. [5] have proposed an anomaly-based methods to detect
time delays and chaff perturbations in a selected connection. Packet time-delays are
detected if RTTs exceed a threshold, while chaff detection compares the similarity of
downstream with upstream sequences.The authors claim detection for chaff ratios 25%
or more, and for delays introduced to up to 70% of all packets.

Ano2, 2011/2013 Huang et al. [11, 6] proposed an anomaly-based method to detect
chaff and delay perturbations since interarrival times in regular connections tend to
follow a Pareto or Lognormal distribution, which chaffed connections supposedly do
not. The authors state 95% detection rate at 50% chaff ratio and more while retaining
zero false positives using a small set of interactive SSH stepping-stone connections.

WM, 2010 Watermarking typically yields very low false-positives for connection cor-
relation. Wang et al. [22] provide an approach that offers at least some resistance
against timing perturbations. The authors assume some limits to an adversary’s timing
perturbations, such as a bound on the delays.The authors state 100% TP with 0.5%
FP with resistance against timing perturbations of up to 1.4s.

5 Results

5.1 Data without evasion tactics

First, we look at the detection rates for traffic from stepping-stones that did not use
any evasive tactics, i.e. S1, . . . , S4 are only forwarding commands and responses. The
successful detection of this activity with low false-positives should be the minimum



Evading stepping-stone detection with enough chaff 9

0.00

0.25

0.50

0.75

1.00

1e−05 1e−04 1e−03 1e−02 1e−01

FP rate

T
P

 r
at

e

Method

PContext

DeepCorr

WuNeur

RWalk

C−Over

WM

ROC−curves on dataset BA

Fig. 4. ROC-curves for different SSD methods on dataset BA (no evasive tactics). Anomaly-based
methods are excluded.

PContext DeepCorr WuNeur RWalk C-Over WM

AUC 0.998 0.997 0.938 0.853 0.965 0.9998
Table 3. AUC-scores for different methods on stepping-stone data without evasive tactics.

requirement for any SSD method. Since anomaly-based approaches aim to only detect
evasive behaviour, we exclude them from this analysis.

Fig. 4 depicts the calculated ROC-curves, which plot the true positive rate against
the false positive rate for varying detection thresholds. Table 3 depicts the overall
AUC-scores.

Unsurprisingly, the watermarking method achieves high detection results with very
low false-positives. Both the PContext and DeepCorr models start to yield good detec-
tion results of around 80% at a FP rate lower than 0.1%, with the PContext method
slightly outpacing the DeepCorr method. RTT-based methods seem to not perform as
well compared to the other included methods. Overall, the observed ROC curves seem
to be in agreement with the stated detection rates of the selected methods except for
RWalk.

5.2 Delays

We now consider the effect of transfer delays added by the attacker to packets on the
detection rates. For that, we pick detection thresholds for each SSD methods corre-
sponding to a FP rate of 0.4% as most methods are able to achieve at least moderate
detection results at this rate. We look at delays added to only to outgoing packets on
S4, the last stepping stone in the chain. Fig. 5 depicts evolution of detection rates in
dependence of the maximum delay δD.

As visible, both anomaly-based methods are capable of detecting added delays
relatively reliably above a certain threshold. Furthermore, both the detection rates of
DeepCorr and the RTT-based C-Over only decrease slightly under the influence of
delays. Detection rates for all other methods decrease significantly to the point where
no meaningful predictions can be made. This is also reflected by the AUC-scores for
traffic with δD = 1000ms, given in Table 4.



10 H. Clausen et al.

0.00

0.25

0.50

0.75

1.00

0 50 100 300 500 1000 1500

maximum delay [ms]

T
P

 r
at

e
Method

PContext

DeepCorr

WuNeur

RWalk

C−Over

Ano1

Ano2

WM

Detection rates on delay dataset DA

Fig. 5. Detection rates in dependence of δD for different methods on dataset DA with a fixed FP rate
of 0.4%.

While the WM method is robust against transfer delays up to δD = 500ms, this
value is smaller than the one claimed by the authors. This might however be a result
of the slightly smaller quantisation step size that we used. It is surprising that the
PContext method shows only little robustness against transfer delays, which contradicts
the authors claims, potentially due to the incorrect assumption that relying on Echo-
packets are not subject to transfer delays.

PContext DeepCorr WuNeur RWalk C-Over Ano1 Ano2 WM

AUC 0.638 0.995 0.613 0.641 0.952 0.997 0.996 0.562
Table 4. AUC-scores for SSD methods with added transfer delays at δD = 1000ms.

5.3 Chaff

We now consider the effect of chaff perturbations added by the attacker to individual
connections on the detection rates. Again we pick detection thresholds for each SSD
methods corresponding to a FP rate of 0.4%.

Chaff packets are added to both the connection between S3 and S4 as well as
between S4 and host T as described in Section 2.3. Fig. 6 depicts evolution of detection
rates in dependence of the ratio of number of chaff packets to packets from the actual
interaction.

As visible, all methods struggle to detect stepping stones once the chaff packets
become the majority of the transferred traffic. This is also evident from the AUC-scores
given in Table 5. Several approaches claimed to be resistent to chaff perturbations,
however prior evaluations were limited chaff ratios below 100% without obvious reason.

It is surprising that the anomaly detection methods do not perform better at detect-
ing chaff perturbations. Chaff in both approaches was however evaluated with different
traffic generation distribution and not compared against a background of traffic follow-
ing a similar generation distribution, which could explain the disagreement between
the results we are finding here.



Evading stepping-stone detection with enough chaff 11

0.00

0.25

0.50

0.75

1.00

0 10 30 50 100 200 300 500

ratio of chaff in %

T
P

 r
at

e
Method

PContext

DeepCorr

WuNeur

RWalk

C−Over

Ano1

Ano2

WM

Detection rates for chaff dataset CA

Fig. 6. Detection rates in dependence of δC for different methods on dataset CA with a fixed FP rate
of 0.4%

Overall, these results are in disagreement with the ”robustness” claims made for
four of the selected approaches, namely PContext, RWalk, Ano1, and Ano2.

PContext DeepCorr WuNeur RWalk C-Over Ano1 Ano2 WM

AUC 0.639 0.886 0.615 0.641 0.589 0.782 0.738 0.839

Table 5. AUC-scores for SSD methods with added chaff at 300% ratio.

5.4 Summary

Overall, detection rates on dataset BA are mostly in line with the claimed capabilities
except for RWalk, although detection rates are slightly lower than stated by most
authors. Delay perturbation increases detection difficulty for most methods, except for
Ano1, Ano2, and DeepCorr, which contradicts robustness claims for PContext and to
some extend WM. Our inserted chaff perturbations however render detection impossible
for all methods examined, which contradicts robustness claims for PContext, Ano1,
Ano2, and RWalk, even though the claims were based on lower chaff levels.

As discussed in Section B and C, longer chains yield higher detection rates for RTT-
based methods while Different network transmission settings seem to have overall little
influence on detection rates.

6 Related work

6.1 Testbeds and data

In 2006, Xin et al. [24] developed a standard test bed for stepping-stone detection,
called SST that generates interactive SSH and TelNet connection chains with variable
host numbers.In contrast to our work, the authors give little detail on implemented
evasive tactics, and is not available anymore.

An approach to use publicly available data comes from Houmansadr et al. [14],who
simulate stepping stones by adding packet delays and drops retroactively to connections



12 H. Clausen et al.

in the CAIDA data [2]. While this procedure seems sufficient for the evaluation of
watermarking methods, it falls short on simulating the effects of an actual connection
chain and leaves out chaff perturbations.

We find that when authors evaluate methods on self-generated data, tested evasive
behaviours are often lacking analytical discussion and their implementations are too
simplistic, leading to increased detection rates. An example of this can be seen in
the evaluation of Ano1 [5], where a standard option in netcat is used to generate
chaff perturbations for evaluation, or for PContext [27] where simulated chaff is added
randomly after the traffic collection.Furthermore, often a relatively low limit on the
amount of inserted chaff perturbations is assumed without obvious reason, thus avoiding
evaluation at higher ratios.

7 Conclusion

In this work, we set out to evaluate the state-of-the-art of SSD methods using a compre-
hensive data generation framework. Our framework simulates realistic stepping-stone
behaviour with SSH-tunnels in different settings and varying amounts of evasive per-
turbation tactics. We will release a large dataset that highlights multiple aspects in
SSD, and is suitable to train ML-based methods.

Overall, our results show that attackers can reliably evade detection by using the
right type and amount of chaff perturbation, which disproves several claims made about
the robustness against this evasive tactic. Although to a lesser degree, our implemented
delay perturbations still affect detection rates for most methods.

Currently, it seems that watermarking methods are most suited to reliably detect
simple stepping-stones in real-life deployment. The performance of DeepCorr indicates
that deep neural networks show the most potential at detecting attacks that use chaff
or delay perturbations if they are trained on suitable data. We find that detection
and false-positive rates for RTT-based methods are significantly lower than for other
methods.

8 Acknowledgments

We are grateful to BT Group PLC who are supporting the PhD research of the first
author in the UK EPSRC CASE scheme, giving invaluable guidance on the needs and
possibilities of intelligent security tools and their evaluation. The third author was
supported by The Alan Turing Institute under the EPSRC grant EP/N510129/1 and
the Office of Naval Research ONR NICOP award N62909-17-1-2065.

References

1. Mcafee technical report on night dragon operation. Technical report, 2015.
2. The CAIDA UCSD Anonymized Internet Traces 2018, 2018. Accessed: 2020-02-10.
3. Luis Ayala. Active medical device cyber-attacks. In Cybersecurity for Hospitals and Healthcare

Facilities, pages 19–37. Springer, 2016.



Evading stepping-stone detection with enough chaff 13

4. Henry Clausen, Robert Flood, and David Aspinall. Traffic generation using containerization for
machine learning. In Proceedings of the Dynamic and Novel Advances in Machine Learning and
Intelligent Cyber Security Workshop. ACM, 2019.

5. Giovanni Di Crescenzo, Abhrajit Ghosh, Abhinay Kampasi, Rajesh Talpade, and Yin Zhang. De-
tecting anomalies in active insider stepping stone attacks. JoWUA, 2(1):103–120, 2011.

6. Wei Ding, Khoa Le, and Shou-Hsuan Stephen Huang. Detecting stepping-stones under the influence
of packet jittering. In 2013 9th International Conference on Information Assurance and Security
(IAS), pages 31–36. IEEE, 2013.

7. David L Donoho, Ana Georgina Flesia, Umesh Shankar, Vern Paxson, Jason Coit, and Stuart
Staniford. Multiscale stepping-stone detection: Detecting pairs of jittered interactive streams by
exploiting maximum tolerable delay. In International Workshop on Recent Advances in Intrusion
Detection, pages 17–35. Springer, 2002.

8. EU ENISA. Baseline security recommendations for iot in the context of critical information in-
frastructures, 2017.

9. Gordon Fraser. Tunneling, pivoting, and webapplication penetrationtesting. Technical report,
SANS, 2015.

10. Stephen Hemminger et al. Network emulation with netem. In Linux conf au, pages 18–23, 2005.

11. Shou-Hsuan Stephen Huang and Ying-Wei Kuo. Detecting chaff perturbation on stepping-stone
connection. In 2011 IEEE 17th International Conference on Parallel and Distributed Systems,
pages 660–667. IEEE, 2011.

12. Shou-Hsuan Stephen Huang, Hongyang Zhang, and Michael Phay. Detecting stepping-stone intrud-
ers by identifying crossover packets in ssh connections. In 2016 IEEE 30th International Conference
on Advanced Information Networking and Applications (AINA), pages 1043–1050. IEEE, 2016.

13. Robert M. Lee, Michael J. Assante, and Tim Conway. Analysis of the cyber attack onthe ukrainian
power grid. Technical report, E-ISAC, 2016.

14. Milad Nasr, Alireza Bahramali, and Amir Houmansadr. Deepcorr: Strong flow correlation attacks
on tor using deep learning. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 1962–1976, 2018.

15. Jaideep D Padhye, Kush Kothari, Madhu Venkateshaiah, and Matthew Wright. Evading stepping-
stone detection under the cloak of streaming media with sneak. Computer Networks, 54(13):2310–
2325, 2010.

16. Vern Paxson and Sally Floyd. Wide area traffic: the failure of poisson modeling. IEEE/ACM
Transactions on networking, 3(3):226–244, 1995.

17. Robert Shullich, Jie Chu, Ping Ji, and Weifeng Chen. A survey of research in stepping-stone
detection. ” International Journal of Electronic Commerce Studies”, 2(2):103–126, 2011.

18. Stuart Staniford-Chen and L Todd Heberlein. Holding intruders accountable on the internet. In
Proceedings 1995 IEEE Symposium on Security and Privacy, pages 39–49. IEEE, 1995.

19. Colin Tankard. Advanced persistent threats and how to monitor and deter them. Network security,
2011(8):16–19, 2011.

20. Petr Velan, Jana Medková, Tomáš Jirśık, and Pavel Čeleda. Network traffic characterisation
using flow-based statistics. In NOMS 2016-2016 IEEE/IFIP Network Operations and Management
Symposium, pages 907–912. IEEE, 2016.

21. Lixin Wang and Jianhua Yang. A research survey in stepping-stone intrusion detection. EURASIP
Journal on Wireless Communications and Networking, 2018(1):276, 2018.

22. Xinyuan Wang and Douglas Reeves. Robust correlation of encrypted attack traffic through stepping
stones by flow watermarking. IEEE Transactions on Dependable and Secure Computing, 8(3):434–
449, 2010.

23. Han-Ching Wu and Shou-Hsuan Stephen Huang. Neural networks-based detection of stepping-
stone intrusion. expert systems with applications, 37(2):1431–1437, 2010.

24. Jianqiang Xin, Lingeng Zhang, Brad Aswegan, John Dickerson, T Daniels, and Yong Guan. A
testbed for evaluation and analysis of stepping stone attack attribution techniques. In 2nd In-
ternational Conference on Testbeds and Research Infrastructures for the Development of Networks
and Communities, 2006. TRIDENTCOM 2006., pages 9–pp. IEEE, 2006.



14 H. Clausen et al.

25. Jianhua Yang and Shou-Hsuan Stephen Huang. Mining tcp/ip packets to detect stepping-stone
intrusion. computers & security, 26(7-8):479–484, 2007.

26. Jianhua Yang and David Woolbright. Correlating tcp/ip packet contexts to detect stepping-stone
intrusion. Computers & Security, 30(6-7):538–546, 2011.

27. Jianhua Yang and Yongzhong Zhang. Rtt-based random walk approach to detect stepping-stone
intrusion. In 2015 IEEE 29th International Conference on Advanced Information Networking and
Applications, pages 558–563. IEEE, 2015.

A False positives

Table 6 depicts the relative contribution5 at FP = 0.4% of each of the three benign
data types to the overall false positive rate. Most methods have more problems with
the heterogeneous nature the CAIDA traces, with only PContext and DeepCorr seeing
most false positives in the SSH traffic.

The multimedia traffic is causing most problems for the anomaly-based methods,
persumably because it follows a similar distribution as the generated chaff perturba-
tions.

PContext DeepCorr WuNeur RWalk C-Over Ano1 Ano2 WM

CAIDA 0.36 0.46 0.47 0.67 0.53 0.48 0.35 0.81
SSH 0.53 0.46 0.21 0.28 0.27 0.05 0.02 0.08
multimedia 0.11 0.08 0.32 0.04 0.20 0.47 0.63 0.11

Table 6. Relative contribution in % of different benign data to the FP rate.

B Influence of chain length

In this section, we look at the effect of differing chain lengths on the detection rates.
We only focus on RTT-based methods here since the other methods should and do not
see a significant effect from varying chain lengths6. Since RTT-based methods aim to
measure the effect of packets travelling via multiple hosts, it is unsurprising that they
perform better at detecting longer chains.

Of the RTT-based methods, only C-Over was able to yield consistent detection
rates under transfer delays. Interestingly, if the C-Over method is applied to connections
between S3 and S4 instead of between S4 and the target, detection rates decrease in the
same manner as for other RTT-based methods. This is not surprising as the underlying
assumption for robustness for this approach relies on Echo-packets not being delayed.



Evading stepping-stone detection with enough chaff 15

0.0

0.2

0.4

0.6

1 3 5 8

number of jumps

T
P

 r
at

e

Method

WuNeur

RWalk

C−Over

Detection rates on chain length dataset CL

Fig. 7. Detection rates in dependence of chain length for different methods on dataset CL with a fixed
FP rate of 0.4%

Value TP deviation from average

DeepCorr WuNeur RWalk C-Over WM

RTT
5ms −0.2% +41.3% −42.3% −36% +0.03%
70ms −5.6% −5.8% +35.1% +51% −2.2%

Packet loss
0% +1.2% +1.3% +2.1% +4.3% +0.02%
7% −9.1% −1.1% −3.1% −7.3% −9.7%

Table 7. Influence of network congestion on detection rates at a fixed FP rate of 0.4%. The given
percentages are describing the change of the detection rate under the given congestion setting when
compared to the overall average.

C Influence of network settings

Finally, we look at the effect of different nework settings. We only show methods that
show significant effects and omitted bandwidth from the evaluation as different values
do not seem to have any effect on detection rates7.

As visible in Table 7, the three RTT-based methods show different responses to
small/large average round-trip-times. While WuNeur, as expected from prior results,
performs better in LAN settings, detection rates of the RWalk and C-Over methods
are boosted by larger RTTs. All methods profit from lower packet losses.

5 after adjusting for their weight
6 For non-RTT-methods, the detection rate error (2.6% − 6.5%) for each length was larger than the

detection rate differences (0.2%− 3.7%) across different lengths.
7 For all methods, the detection rate differences (0.7%− 6.2%) were smaller across bandwidths than

the overall detection rate errors (2.6%− 6.5%).


