
Formally Verifying Robustness and Generalisation
of Network Intrusion Detection Models
Robert Flood

University of Edinburgh
Edinburgh, United Kingdom

r.flood@ed.ac.uk

Marco Casadio
Heriot-Watt University

Edinburgh, United Kingdom
mc248@hw.ac.uk

David Aspinall
University of Edinburgh

Edinburgh, United Kingdom
da@ed.ac.uk

Ekaterina Komendantskaya
University of Southampton

Southampton, United Kingdom
e.komendantskaya@soton.ac.uk

ABSTRACT
We introduce a new approach for robustness and generalisation
of neural network models used in Network Intrusion Detection
Systems (NIDS). Models for NIDS must be robust against both
natural perturbations (accounting for typical network variations)
and adversarial attacks (designed to conceal malicious traffic). The
standard approach to robustness is a cycle of training to recognise
existing attacks followed by generating new attack variations to
defeat detection. Besides robustness, another problemwith research
NIDS models trained on limited datasets is the tendency to over-fit
to the dataset chosen; this highlights the need for cross-dataset
generalisation. We address both problems by incorporating recent
formal verification tools for neural networks. These frameworks
allow us to characterise the input space and we also use verification
outputs to generate constrained counterexamples to generate new
malicious and benign data. Then adversarial training improves both
generalisation and adversarial robustness. We demonstrate these
ideas with novel specifications for network traffic, training simple,
verifiable networks. We show that cross-dataset and cross-attack
generalisation of our models is good and can outperform more
complex, state-of-the-art models, unable to be verified similarly.

CCS CONCEPTS
• Security and privacy → Logic and verification; Intrusion
detection systems; • Computing methodologies → Machine
learning approaches.

KEYWORDS
IDS, formal verification, neural networks, robustness, generalisa-
tion, network security

ACM Reference Format:
Robert Flood,Marco Casadio, DavidAspinall, and Ekaterina Komendantskaya.
2025. Formally Verifying Robustness and Generalisation of Network Intru-
sion Detection Models. In The 40th ACM/SIGAPP Symposium on Applied
Computing (SAC ’25), March 31-April 4, 2025, Catania, Italy. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3672608.3707927

This work is licensed under a Creative Commons 4.0 International License.
SAC ’25, March 31-April 4, 2025, Catania, Italy
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0629-5/25/03
https://doi.org/10.1145/3672608.3707927

1 INTRODUCTION
Given the adversarial nature of intrusion detection,machine leaning-
based network intrusion detection systems (NIDS) must be robust
to evasive behaviours. Security is often likened to a cat-and-mouse
game and this is seen in neural network robustness: adversarial
attacks are proposed, defences are designed, before new attacks are
created, restarting the cycle. In contrast to other defences, neural
network verification is a formal approach which guarantees robust-
ness within specified parameters. Recent work on methods like
Reluplex [28, 42] use logical specifications to impose constraints
on neural networks, restricting their outputs for given inputs and
providing mathematical robustness guarantees.

But adversarial robustness is not the only form of robustness
needed: NIDS should also be robust to inherent problem-space diver-
sity, such as changes to network bandwidth or to minor variations
in malicious traffic. In research NIDS pipelines, these differences are
often not evaluated. One reason is the scarcity of sufficiently diverse
public NIDS data; models are often trained and tested on the same
dataset, without testing for robustness to concept drift. Further-
more, without sufficient data, it is difficult to validate that models
do not overfit to arbitrary features (unrelated to attack classes being
recognised). The marked reduction in the performance of typical
models when trained and tested using disparate datasets is well-
known, even for datasets containing similar malicious traffic [2]. In
other words, cross-dataset generalisation is often poor. This is likely
also true in real-world scenarios when IDS developers have limited
access to sufficiently varied data.

Our work addresses these twin issues of verifiable robustness
and generalisation by ensuring that the models we train verifiably
adhere to certain global constraints. In contrast to other fields, such
as computer vision where specifications are defined locally via ℓ𝑝 -
balls, discussed in Section 2.3, network data is structured enough
that we can specify expected properties globally. For example, we
can specify the structure of well-formed TCP handshakes, while
our models learn other relationships independently. An analogy
to image classification might help: we might verify that an image
model classifying animals biases black and white pixels when iden-
tifying pandas, while allowing the network to infer the general
shape of the animal. Importantly, our approach is also distinct from
standard signature-based NIDS, as our specification provide only
high-level details about expected malicious behaviour.

https://doi.org/10.1145/3672608.3707927
https://creativecommons.org/licenses/CC-BY-SA/4.0/legalcode
https://creativecommons.org/licenses/CC-BY-SA/4.0/legalcode
https://doi.org/10.1145/3672608.3707927

SAC ’25, March 31-April 4, 2025, Catania, Italy Flood et al.

Our global constraints define known regions of benign and ma-
licious traffic, allowing us to enforce model behaviour for corre-
sponding network flows. We do this by generating additional ma-
licious and benign data via specification-driven adversarial train-
ing [19], finding counter-examples via PGD [31] that lie within our
benign/malicious constraints and adding them to the training set.
This process expands the training data and also helps the model sat-
isfy our specifications. By strengthening expected model behaviour
in this manner, the models prioritise features reflecting attack be-
haviour over less relevant features, improving generalisation. We
show a high-level overview of this process in Figure 1, with more
detail in Section 3.

We define our properties using Vehicle [14], a specification lan-
guage for writing and testing logical constraints for neural net-
works. Vehicle offers a high-level, readable DSL which acts as a
front-end for the Reluplex-based verifier Marabou [42]. Note that
both Vehicle and Marabou are pre-existing, emerging tools and not
contributions of our paper. However, our work demonstrates their
non-trivial application to a new domain area. Using Vehicle, we can
better reason about model behaviour by contrasting satisfiable and
unsatisfiable specifications. For instance, we automatically produce
evasive flows according to threat models written in Vehicle and
rank their relative effectiveness.

To summarise, our contributions include:
• Specifications: We write and test many specifications for
model verification. In doing so, we eschew ℓ𝑝 metrics. Instead,
we embed expert knowledge in a global manner, specifying
non-trivial, novel and performant properties. We provide the
code outlining this process for public use1.

• Generalisation: We explicitly measure the generalisation
performance of our networks, considering both cross-dataset
and cross-attack generalisation. Alongside standard bench-
mark datasets, we generate bespoke attack data.

• Verification: We produce NIDS models that are verifiably
robust against adversarial and natural perturbations in cer-
tain regions of feature space. We also use counterexamples
to examine model weaknesses, ranking strategies for produc-
ing evasive traffic. Via this process, we show that delaying
packets is the most effective evasive strategy for our models.

• Performance: Our verified models outperform a compa-
rable state-of-the-art model, improving generalisation by
40%.

Vehicle
Spec.

⊕Adv.
Data

Train
Data

Model Verifier Counter
Example

Robust
Model

Figure 1: The specification-driven training pipeline.

Structure of the paper. Section 2 covers some basic background
on NIDs, adversarial robustness and recent work on neural network
verification. Section 3 describes the methodology for our new veri-
fied NIDS pipeline, in particular, explaining the format and meaning
1https://github.com/glo-fi/NIDS-Verify

of specifications. Then Section 4 describes eight example applica-
tions of verification in NIDS, including cross-dataset generalisation
(robustness), cross-attack generalisation and using the verification
process to generate realisable evasive traffic. This last application
can help understand model failures using the specification lan-
guage, suggesting fixes or pre-processing. Finally, Sections 5, 6
and 7 discuss limitations, related work and summarise the paper.

2 BACKGROUND
2.1 Network Intrusion Detection
Benchmark NIDS datasets often have two parts, raw PCAP data,
and tabular flow features. These public datasets have bolstered the
development of myriad architectures and pipelines.

ML-basedNIDS ability to generalise to new data scenarios is high-
lighted as a key advantage over signature-based methods, a driving
motivation for the field. Whilst some works explicitly test for gener-
alisation [1], the rarity of cross-dataset evaluation, or explicit gener-
ation of an alternative test data, fails to interrogate this assumption.
Furthermore, when such results are reported, they suggest that
cross-dataset generalisation is a major hurdle in NIDS research: in
an investigation of NIDS cross-generalisation, Apruzzese et al. [2]
find that NIDS F1 scores can collapse from near-perfection to less
than 0.5. This is despite the fact that some benchmark datasets
are highly similar, such as CIC IDS 2017 and 2018 [34], containing
conceptually similar benign traffic and attacks.

2.2 Neural Network Verification
Recent advancements have seen the development of multiple neural
network verification frameworks, which help validate the function-
ality and safety of neural networks under specific conditions [3, 4].
These tools are either complete verifiers, delivering definite true
or false decisions, or incomplete verifiers that provide true or un-
known outcomes. Complete verifiers employ methods like Satisfia-
bility Modulo Theories (SMT), Mixed-Integer Linear Programming
(MILP), or Branch-and-Bound (BaB).

SMT-based verifiers [28, 42] and MILP-based strategies [12, 36]
translate specifications into linear inequalities, offering precise
constraint representation at the expense of scalability. Conversely,
BaB verifiers [18, 21] approximate constraints to improve scalability
at the expense of precision. In this work, we use the SMT-based
Marabou [42] for complete verification.

Marabou processes network properties by modifying the sim-
plex method for networks with piece-wise linear functions like
ReLUs, known as ReLUplex [28]. It computes node bounds and
checks the satisfaction of linear constraints, identifying counter-
examples when conditions are not met. We interface with Marabou
using Vehicle, a high-level functional language designed for precise
specification writing in neural networks [14].

To satisfy non-trivial constraints, networks are trained for ro-
bustness, using techniques such as adversarial training. After robust
training, models often achieve higher verification success and are
more likely to satisfy the desired properties.

2.3 Adversarial Robustness in NIDS
Given their security-centric role, adversarially robust NIDS are vital.
Despite this, there is a disconnect between existing NIDS evasion

Formally Verifying NIDS SAC ’25, March 31-April 4, 2025, Catania, Italy

Fy

Fx

Figure 2: Initial boundary -
Fails to generalise

Fy

Fx

Figure 3: Global Spec. - Con-
strains all entries together

Fy

Fx

Figure 4: Local Spec. - Con-
strains entries individually

: Malicious Data - Training, : Malicious Data - Test, : Benign Data, 𝐹𝑥 : A relevant feature, 𝐹𝑦 : An arbitrary feature

methodologies and those often used to determine model robustness.
In the latter case, ‘closeness’ can be defined as a region of perturbed
inputs alongside some norm [29]. Classical robustness, intuitively,
states that small variations to model input should result in small
changes in its output. Mathematically, given model 𝑁 with input 𝑥 ,
is said to be robust iff for all 𝜖 there exists 𝛿 such that:

∀𝑥, 𝑥0 . | |𝑥 − 𝑥0 | |𝑝 < 𝛿 ⇒ ||𝑁 (𝑥) − 𝑁 (𝑥0) | |𝑝 < 𝜖 (1)

where | |.| |𝑝 is the standard ℓ𝑝 norm.
However, in NIDS, attacks that are identical in purpose can have

wildly varying flow statistics and existing IDS evasion techniques
do not map neatly onto the above notion of robustness. Instead,
several papers craft adversarial examples with domain constraints,
aiming to maintain flow semantics[24, 35, 39].

3 METHODOLOGY
Rather than simply apply tools to a new setting in the most straight-
forward way, we want to explore how verification can spawn new
ideas in NIDS research. Vehicle [14] is ideal for this, allowing us to
pinpoint and interpret details of model behaviour.

To develop this methodology, we have to confront limitations of
current verification frameworks whilst writing non-trivial specifi-
cations. First, the Vehicle language is limited to simple quantifiers,
boolean operands, conditionals and arithmetic. Thus, our feature
set needs to express concrete properties of the traffic, avoiding fea-
tures with high inter-feature dependency such as ‘Forward Packet
Size Mean’ and ‘Total Packet Size Deviation’. Second, for our prop-
erties to correctly bound benign/malicious traffic, we rely on global
constraints that reflect domain knowledge. Third, we have to write
constraints that do not cause exponential blow-up of Marabou. We
note that rules for signature-based NIDS have similar complexity
and expertise requirements, but would not allow for the generalisa-
tion that our NIDS builds in. We detail our approach to these issues
in Sections 3.3, 3.1 and 3.2 respectively.

Our verification examples in Section 4 have multiple specifica-
tions with many unique constants. For readability, we replace these
constants, writing lower bounds for a feature 𝐹 as 𝛼𝐹 , upper bounds
as 𝛽𝐹 and constants as 𝛾𝐹 . Thus, a simple, arbitrary specification

for model 𝑁 and input 𝑥 that constrains 𝑁 to output class𝐶0 when
the first five features lie within certain bounds takes the form:

Bound5Feats : ∀𝑖 ∈ [1, 5] . 𝛼𝑖 ≤ 𝑥𝑖 ≤ 𝛽𝑖 =⇒ 𝑁 (𝑥) = 𝐶0 (2)

We can also use specifications to check for correct usage. For in-
stance, all models we develop adhere to ValidInput, which ensures
that all features lie between 0 and 1:

ValidInput : ∀𝑖, 𝑥 . 0 ≤ 𝑥𝑖 ≤ 1 (3)

As large feature sets can cause overfitting to arbitrary features [25],
we use a restricted feature set. Given a flow of size 𝑁 , we extract
packet-level features from the first𝑚 packets: packet sizes, inter-
arrival times (IATs), TCP flags and packet directions.We supplement
these with two features that are constant across a flow: transport
protocol — TCP or UDP — and time since last flow with identical
Source/Destination IPs — a feature we call TimeElapsed. Otherwise,
when 𝑁 ≤ 𝑚, we zero pad for ‘missing’ packets. For a given flow 𝑥 ,
we write the packet features of the 𝑖-th packet as: 𝑥FeatureName-𝑖 .

In Sections 3.1– 3.2, we introduce ourmethodologywith a straight-
forward experiment to examine whether, given a simple attack and
weak generalisation conditions, it is possible satisfy a global robust-
ness specification. We train a model to detect nmap traffic [30] and
verify its correctness properties.

3.1 Global vs. Local Specifications
Our aim is to write specifications that improve model robustness
and cross-dataset generalisation, by encoding expert knowledge.
We do this globally. In other words, each property is defined in a
fixed manner for the entire input space. We contrast this with local
specifications, where each property is dependant on specific inputs,
such as classical robustness defined in Section 2.3. Both formulations
aim to enforce model robustness. We demonstrate the difference
visually in Figures 3–4.

We divide features into three categories depending on how an
expert may interpret them:
(1) Related features which are directly relevant for classification.
(2) Bounded features whose behaviour is fixed in certain intervals.
(3) Unknown features whose relationship is unknown.

SAC ’25, March 31-April 4, 2025, Catania, Italy Flood et al.

Consider detecting a DoS attacks flooding a HTTP server. A
defining feature is that the webpage is repeatedly accessed in quick
succession. Thus, 𝑇𝑖𝑚𝑒𝐸𝑙𝑎𝑝𝑠𝑒𝑑 is likely a related feature. In con-
trast, small changes to the size of the HTTP GET request packet —
which can naturally vary — is likely irrelevant for flow classification.
As such, we would consider this feature to be bounded. Importantly,
we do not want to exclude this feature entirely, as large changes
could still be indicative of abnormal behaviour, such as a large pay-
load encoded as a URL parameter. Instead, we aim to verify model
behaviour in a bounded, specified interval. Finally, the relationship
between, for example, packet flag features and classification may
be unclear. We would consider these to be unknown features. For
other attacks, this categorisation would almost certainly change.

We apply a similar logic to our nmap example. As standard nmap
flows are short and highly predictable, consisting of quick three-way
handshakes with fixed sizes, we write specifications that describe
these properties as being related or bounded, detailed below.

Related Features. For global specifications, we treat related and
bounded features in a similar manner, specifying model behaviour
explicitly within certain regions. For related feature 𝐹 , we specify an
interval where the model must make fixed classification decisions.
Formally, given flow 𝑥 which takes on value 𝑥

𝐹
for feature 𝐹 and

model 𝑁 that performs binary classification 𝑁 (𝑥) → 𝐶𝑖 , 𝑖 ∈ [0, 1],
we fix 𝑖 and specify an interval [𝛼, 𝛽] such that:

∀𝑥 . 𝑥
𝐹
∈ [𝛼, 𝛽] =⇒ 𝑁 (𝑥) = 𝐶𝑖 (4)

In words, all arbitrary 𝑥 with 𝑥
𝐹
∈ [𝛼, 𝛽] must be classified as𝐶𝑖 .

For our nmap verification, we highlight related features by spec-
ifying that flows with sufficiently ‘quick’ TimeElapsed values and
packet sizes that are ‘close’ to those of a standard nmap connection
must be malicious (writing 𝑁 (𝑥) = 𝐶𝑚𝑎𝑙 as mal):

MalElapsed : 𝑥timeElapsed = 0.0 ∨ 𝑥timeElapsed ≤ 𝛽𝑡𝑖𝑚𝑒𝐸𝑙𝑎𝑝𝑠𝑒𝑑 (5)
MalPktSize : ∀𝑖 ∈ [1, 3] . 𝛼𝑝𝑘𝑡𝑆𝑧−𝑖 ≤ 𝑥pktSz-i ≤ 𝛽𝑝𝑘𝑡𝑆𝑧−𝑖 (6)
nmap : ∀𝑥 . MalElapsed(𝑥) ∧ MalPktSize(𝑥) =⇒ mal (7)

Bounded Features. In contrast, for bounded feature 𝐹 , we wish
to specify an interval where altering 𝑥

𝐹
∈ [𝛼, 𝛽] does not change

model behaviour for fixed 𝑥 . Formally, given two flows 𝑥 and 𝑥

which differ only on feature 𝐹 ∈ [𝛼, 𝛽]:

𝑁 (𝑥) = 𝐶𝑖 =⇒ 𝑁 (𝑥) = 𝐶𝑖 (8)

In other words, altering 𝑥
𝐹
within [𝛼, 𝛽] should not affect the

model’s output.

Unknown Features. We stress that we do not attempt to com-
pletely encapsulate attack definitions — or that this is even possible
to do by hand. Thus, we include features where we do not specify
their relevancy for classification, leveraging the model’s ability to
learn the relationship for us.

Importantly, a feature’s category can be defined implicitly
across multiple rules. Given some property 𝑃1 which bounds fea-
ture 𝐹1 ∈ [𝛼1, 𝛽1] and property 𝑃2 which bounds 𝐹2 ∈ [𝛼2, 𝛽2], the
following rules imply 𝐹1 is bounded and 𝐹2 is related:

𝑆1 : 𝑃1 ∧ 𝑃2 =⇒ 𝑁 (𝑥) = 𝐶0

𝑆2 : 𝑃1 ∧ ¬𝑃2 =⇒ 𝑁 (𝑥) = 𝐶1 (9)

3.2 Principles for Global Specifications
When writing specifications, we follow several principles to en-
sure their utility whilst adhering to the technical limitations of the
verification framework. We present more specifications in Section 4.

Benign Malicious
Label

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Ti
m

e
El

ap
se

d

Dataset
Train Data
Test Data
Adversarial Data

Figure 5: Expansion of related feature, TimeElapsed.

Input Expansion. By generating additional data, our specifica-
tions expand the space of model inputs. This is good: NIDS datasets
often have limited diversity [20] and expanding input could im-
prove generalisation. The adversarial training procedure ‘fills’ loose
bounds around certain features, as seen in Figure 5, which shows
that adversarial data is more dense in regions without training data.
Thus, we underspecify the decision boundary as wider bounds may
lead to contradictions between properties or cause the model to
incorrectly learn benign/malicious behaviours.

Input Reduction. Although we want an exhaustive specification
that captures all malicious flows in the training dataset (and all real-
isable malicious flows not in the data), in reality, this is impossible.
One limiting factor is that disjunctions cause exponential blow-up
of the Marabou backend. For instance, we can write a property that
must hold regardless of packet directions:

allDirections : ∀𝑖 ∈ [1, 10] . 𝑥𝑝𝑘𝑡𝐷𝑖𝑟−𝑖 = in
∨ 𝑥𝑝𝑘𝑡𝐷𝑖𝑟−𝑖 = out =⇒ 𝑦 (10)

2 1 0 1 2 3
PCA Dim 1

2

1

0

1

2

PC
A

D
im

 2

Figure 6: Projection showing the limited overlap between
training and adversarial data.

Formally Verifying NIDS SAC ’25, March 31-April 4, 2025, Catania, Italy

However, this requires 210 checks to verify. Poorly written specifi-
cations can easily require costly checks. Thus, as well as generating
additional input, we must also restrict the verifiable input space
to prevent blow-up. For instance, we can consider only flows that
conform to expected protocol behaviour (determined via packet
sizes and flags). Similarly, we can limit properties by only consider-
ing the most common combinations in the training data. Together,
these allow us to write specifications representing realistic traf-
fic without onerous resource usage. For instance, in Section 4.1,
we consider four combinations of packet directions, encapsulating
approximately 60% of malicious training data whilst reducing the
number of checks from 1024 to 16. This limited subspace can be
visualised as the space occupied by the adversarially generated data
versus the training data. In Figure 6, we demonstrate this reduced
overlap via PCA along the bounded features.

Counterexample-Guided Specifications. In our experience, writ-
ing immediately satisfiable specifications often stems from inadver-
tently trivial conditions. Due to the feature/problem space gap in
NIDS, it is difficult for specifications to cover all edge cases, which
then fail in some unexpected way. For instance, when specifying the
behaviour of benign traffic, one might not bound a flow’s duration.
However, this will likely be unsatisfiable as, say, the model may
classify negative durations as malicious. However, this flow is not
actually realisable, suggesting a disconnect between the specifica-
tion and what the model understands to be benign.

Thus, we write specifications in a counterexample-guided man-
ner. Given a counterexample 𝑥 , we check whether 𝑥 conforms to our
understanding of the malicious data. Keeping a human-in-the-loop,
if we identify 𝑥 as unrealisable, due to, say, impossible packet sizes,
inter-arrival times or flag combinations, we rewrite the specifica-
tion to eliminate this mistaken counterexample. The specifications
in Section 4 vary in complexity and sensitivity, with some requiring
40+ counterexamples and refinements to be verifiable.

Nmap Results. As can be seen in Table 1, we achieve a perfect F1
score classifying basic nmap traffic. Due to the attack’s homogene-
ity, this is not surprising. However, the model is mathematically
guaranteed to be robust against minor perturbations. Importantly,
the specification is only satisfied after adversarial training. Before,
no properties were verifiable, even after reducing the global bounds.
This highlights how ML-based NIDS can easily overfit, justifying
using verification to guarantee robustness.

3.3 Feature Set & Data
We test the model’s cross-dataset generalisation performance with
an even split between the benign and malicious classes. We consider
DoS Hulk, DoS Slowloris, FTP/SSH Bruteforce and SQL injection traffic
as the malicious classes. We sample training data from CIC IDS
2017 and consider two test datasets. For the first, we extract benign
and attack data from CIC IDS 2018. For the second, we use bespoke
attack data to evaluate model performance when generalising to dif-
ferent network conditions and flow lengths. We generate this traffic
via DetGen [13], a deterministic network generation framework.
When applicable, we alter the traffic’s temporal characteristics by
limiting attacker bandwidth to 10mb, 25mb and 50mb, altering both
inter- and intra-arrival times i.e., TimeElapsed. To alter the traffic’s

spatial characteristics, we assume that an attacker is able to attack
different webpages/databases or use evasive packet-padding. We
generate attack traffic for five scenarios, corresponding to differ-
ent webpage/database sizes or padding lengths and combine this
with benign traffic from CIC IDS 2018. We call this the ‘DetGen’
dataset. We preprocess data and select models via reference to the
training data only to prevent data leakage and to simulate detecting
unknown attacks. This process follows the recommendations of
Flood et al. [20] to alleviate issues with benchmark NIDS datasets.

4 APPLICATIONS OF VERIFICATION
All models we train are of fixed architecture, consisting of a feedfor-
ward network with shape (256, 128, 2) with approximately 44000
parameters. For these networks, Vehicle takes roughly 8 minutes
to verify all global specifications.

4.1 Cross-dataset Generalisation
Experiment. Following the nmap verification, we consider more

complicated attacks with more complex specifications. First, we
train a model to detect all volumetric denial of service attacks in the
CIC datasets, aiming to generalise to arbitrary network conditions
and page sizes. To ensure that the model learns the salient features
of each attack, we write properties that reinforce these generalisa-
tion aims. The DetGen data consists of HTTP flood traffic generated
in the manner outlined in Section 3.3. As a benchmark, we compare
our results to LUCID [16], a state-of-the-art DoS classifier, as well
as our simple model without adversarial training.

Specifications. All DoS attacks in the CIC datasets function via
asymmetric resource usage. Some attacks increase the target load
by delaying responses, leading to artificially high inter-arrival times
and flow durations, or deviate from the expected behaviour of a
TCP/HTTP connection. We aim to capture these defining qualities
in our properties. In addition to ValidInput and MalTimeElapsed
from Section 3, we write three base properties:

ValidTCPHandShake : 𝑥pktFlag-1 = SYN ∧ 𝑥pktSz-1 = 52
∧ 𝑥pktDir-1 = out ∧ 𝑥pktFlag-2 = SYN + ACK ∧ 𝑥pktSz-2 = 52
∧ 𝑥pktDir-2 = in ∧ 𝑥pktFlag-3 = ACK ∧ 𝑥pktSz-3 = 40
∧ 𝑥pktDir-3 = out ∧ 𝑥protocol = TCP (11)
ValidHTTPConn : 𝑥pktFlag-4 = ACK + PSH ∧ 𝛼𝑝𝑘𝑡𝑆𝑧−4 ≤
𝑥pktSz-4 ≤ 𝛽𝑝𝑘𝑡𝑆𝑧−4 ∧ 𝑥pktDir-4 = out ∧ 𝑥pktFlag-5 = ACK
∧ 𝑥pktSz-5 = 40 ∧ 𝑥pktDir-5 = in ∧ 𝑥protocol = TCP (12)
ValidIATs : ∀𝑖 ∈ [2, 10] . 0.000001 ≤ 𝑥𝑝𝑘𝑡𝐼𝐴𝑇𝑠−𝑖 ≤ 0.05∨∑︁
𝑖

𝑥𝑝𝑘𝑡𝐼𝐴𝑇𝑠−𝑖 ≤ 0.2 (13)

validSizes : ∀𝑖 (𝑥𝑝𝑘𝑡𝑆𝑧−𝑖 >= 40) ∧ (
10∑︁
5
𝑥𝑝𝑘𝑡𝑆𝑧−𝑖 > 400) (14)

These form the building blocks of the four main properties which
specify malformed TCP connections, infrequent (presumably be-
nign) HTTP traffic, volumetric HTTP traffic and volumetric HTTP
traffic with unusual IATs: respectively, invalidHTTP, GoodHTTP,
HulkAttacks and SlowIATsAttacks.

SAC ’25, March 31-April 4, 2025, Catania, Italy Flood et al.

invalidHTTP : ∀𝑥 . validInput(𝑥) ∧ (¬validTCPHandshake(𝑥)
∨ ¬validHTTPConn(𝑥)) =⇒ 𝑚𝑎𝑙 (15)
GoodHTTP : ∀𝑥 . validInput(𝑥) ∧ validTCPHandshake(𝑥)
∧ validHTTPConn(𝑥) ∧ validTimeElapsed(𝑥)∧
validIATs(𝑥) ∧ validSizes(𝑥) =⇒ 𝑏𝑒𝑛 (16)
HulkAttacks : ∀𝑥 . validInput(𝑥) ∧ validTCPHandshake(𝑥)
∧ validHTTPConn(𝑥) ∧ ¬validTimeElapsed(𝑥)∧
validIATs(𝑥) ∧ validSizes(𝑥) =⇒ 𝑏𝑒𝑛 (17)
SlowIATsAttacks : ∀𝑥 . ValidInput(𝑥)∧
ValidTCPHandShake ∧ ¬ValidIATs(𝑥) =⇒ mal (18)

Table 1: F1 scores of tested networks. Bold indicates models
that satisfy relevant specifications.

Classifier Test Data Acc.

Nmap Verification

NN nmap (DetGen) 1.0000

Cross-dataset Generalisation

NN DoS (CIC IDS 2018) 0.5583
NN DoS (DetGen) 0.5622
LUCID DoS (CIC IDS 2018) 0.5421
LUCID DoS (DetGen) 0.5468
NN DoS (CIC IDS 2018) 0.9111
NN DoS (DetGen) 0.9521

Cross-attack Generalisation

NN SSH (CIC IDS 2018) 0.4456
NN FTP (DetGen) 0.4914
NN SSH (CIC IDS 2018) 0.8871
NN SSH (DetGen) 0.8059
NN FTP (DetGen) 0.8938

Results. Table 1 summarises performance of the models along-
side comparative benchmarks. Since the specifications are global
rather than local, we do not express verifiability as a percentage of
verified subspaces. Instead, the success of the global specifications
is presented as a binary outcome: either verified or not verified.

We verify a series of complex specifications whilst enhancing
cross-dataset generalisation. Training with adversarial loss, we
improve cross-dataset generalisation accuracy by approximately
0.35–0.4 on both the CIC IDS 2018 and DetGen datasets. We also
note that more complicated models do not produce similar improve-
ments. Contrasted with LUCID [16], a state-of-the-art DoS classifier
which cannot be verified with Marabou due to its architecture, the
model is highly performant whilst being verifiable.

Importantly, our specifications allow us to investigate complex
feature interactions in a human-readable manner, ensuring that the
model conforms to expectations. For instance, the HulkAttacks and
SlowIATsAttacks specifications both require the TimeElapsed fea-
ture to be less than some bound, 𝛽𝐻𝑢𝑙𝑘 and 𝛽𝑆𝑙𝑜𝑤𝐼𝐴𝑇 , respectively,
whilst the SlowIATsAttacks specification additionally constrains
the IATs of a flow to be large. Maximising these 𝛽 bounds, we find

that this extra IAT constraint allows us to verify SlowIATsAttacks
specifications when 𝛽𝐻𝑢𝑙𝑘 << 𝛽𝑆𝑙𝑜𝑤𝐼𝐴𝑇 , demonstrating that un-
usually high IATs contribute towards classifying flows as malicious.

4.2 Cross-attack Generalisation
Experiment. We test the impact of our verification pipeline on

the model’s cross-attack generalisation performance. Specifically,
we evaluate the model’s ability to generalise to distinct but concep-
tually similar attacks, not present in the training data. Due to the
volumetric nature of both the SSH-BruteForce and FTP-BruteForce
attacks in CIC IDS 2017 and 20182, we consider these attacks to
have some high-level similarity to DoS data.

We train the model solely on DoS flows from CIC IDS 2017 and
on specification-based adversarial DoS flows, which we generate
without reference to the malicious SSH or FTP traffic. Specifically,
we do not generate adversarial traffic based on the FTP or SSH
specifications. However, we still try to verify these specifications
for the model.

Specifications. Similar to the ValidHTTPConn property in Sec-
tion 4.1, we restrict the specifications to SSH/FTP login handshakes,
identified via sequences of packet sizes, and enforce that malicious
FTP/SSH flows have low inter-flow arrival time:

ValidLoginFTP/SSH : ∀𝑖 ∈ [1, 10] . 𝑥pktSz-i = 𝛾𝑝𝑘𝑡𝑆𝑧−𝑖 (19)
NegTimeElapsed : 𝑥𝑡𝑖𝑚𝑒𝐸𝑙𝑎𝑝𝑠𝑒𝑑 ≤ 𝛽𝑡𝑖𝑚𝑒𝐸𝑙𝑎𝑝𝑠𝑒𝑑 (20)
MalLoginFTP/SSH : ∀𝑥 . ValidLoginFTP/SSH(𝑥)∧

NegTimeElapsed(𝑥) =⇒ mal (21)

Results. Our approach also improves cross-attack generalisa-
tion. The model achieves a score of 0.8871 and 0.8938 on SSH and
FTP BruteForce traffic respectively, when trained exclusively on
DoS traffic. As we generate traffic that adheres to our specification
during the adversarial training process, we expand the training data
with synthetic malicious data with low TimeElapsed and synthetic
benign data with high TimeElapsed. Subsequently, the model is
far less likely to overfit to the DoS traffic in CIC IDS 2017, which
has little diversity. As FTP and SSH BruteForce traffic can also be
identified via low inter-flow arrival times, the models successfully
generalise to these distinct attack classes. Furthermore, we manage
to verify the specifications outlined in above without additional
adversarial training, providing strong guarantees about detecting
malicious SSH and FTP traffic.

4.3 Generating Realisable Evasive Traffic via
Counterexamples

Experiment. Next, we aim to explore model failures construc-
tively, using them to generate interpretable examples of verifiably
evasive and realisable traffic flows for particular attacks automat-
ically. We do this by training an initial NIDS to detect SQL injec-
tion traffic via a standard train/test pipeline — without adversarial
training. We then write specifications based on random malicious
samples in the training data, ensuring that they are verifiable by

2Whilst data has been labelled as FTP-BruteForce in CIC IDS 2018, we note that the
attack was launched against a closed port so is uninteresting. We omit this part of the
data and rely on the DetGen data instead.

Formally Verifying NIDS SAC ’25, March 31-April 4, 2025, Catania, Italy

tightly restricting feature bounds. By repeatedly querying the ver-
ifier whilst enlarging features bounds, we can produce counter-
examples akin to a white-box, feature-space adversarial attack [23].
We target a model that was trained to detect SQL injection-based
dumping of a mySQL database.

If performed naively, we have few guarantees about these flows,
such as whether they correspond to actual traffic. To ameliorate
this, we undertake this process in a systematic manner, aiming to
produce counter-examples that reflect realisable evasive traffic. Our
threat model assumes that an attacker can only modify their attack
traffic, thus, we only change forward packet features. Furthermore,
we assume that features can only be increased — via packet delays,
random padding or turning inconsequential TCP flags on. With
these restrictions, we can write hundreds of exploratory specifica-
tions to test whether any suitable evasive traffic conforms to these
standards.

Specifications. Given an exemplar malicious flow, we write a
specification that corresponds to the model classifying that particu-
lar flow as malicious, setting all features to constant values:

Initial : ∀𝑖 ∈ [1,𝑚] . 𝑥feature-i = 𝛾𝑓 𝑒𝑎𝑡𝑢𝑟𝑒−𝑖 =⇒ 𝑚𝑎𝑙 (22)

As SQL injection traffic is more complicated than DoS traffic, we
parse the first 26 packets of each flow. Approximately 12 of these
are attacker controlled and, since we modify packet sizes, flags and
IATs, this results in roughly 36 attacker controlled features. Due
to the infeasibility of performing an exhaustive grid search over
all of these features, we randomly select a subset 𝑎, re-writing the
specifications such that 𝑥 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒−𝑖 ∈ 𝑎 is bounded from below by
𝛾𝑓 𝑒𝑎𝑡𝑢𝑟𝑒−𝑖 and above by 𝛽𝑓 𝑒𝑎𝑡𝑢𝑟𝑒−𝑖 .

Evasive : ∀𝑥 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒−𝑖 ∈ 𝑎. 𝛾𝑓 𝑒𝑎𝑡𝑢𝑟𝑒−𝑖 <= 𝑥feature-i

<= 𝛽𝑓 𝑒𝑎𝑡𝑢𝑟𝑒−𝑖 =⇒ 𝑚𝑎𝑙 (23)

We consider any counterexamples produced via this process to
be realisable evasive traffic. We automate this process 50 times, ran-
domly selecting 𝑎 for each iteration, tracking the ratio of satisifiable
to unsatisfiable specifications. We consider values of |𝑎 | up to 16,
and of upper-bounds 𝛽𝑓 𝑒𝑎𝑡𝑢𝑟𝑒−𝑖 in increments of 0.1. To gain better
insight into the effectiveness of, say, flipping TCP flags compared
with padding packet sizes as evasion strategies for this specific
network, we then repeat the search, increasing the bounds of only
a specific class of feature at a time.

Results. The entire verification process takes roughly 12 hours
per flow on consumer hardware3. The model initially separated
SQL injection traffic from benign flows with an F1 score of 0.81 and
our analysis only holds for this specific model. However, we note
that this verification-driven approach is generally applicable and
provides unique insight into failure modes of a model. We success-
fully begin producing realisable evasive traffic for perturbations
greater than 0.2, as seen in Figure 7.

In Figure 8, we show the effectiveness of our three attack strate-
gies — padding packets, delaying packets and flipping TCP flags
— at different perturbation levels. Here, we see that the success of

3A laptop with an 11th Gen Intel i5-1135G7 and 8GB of RAM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Controllable Features

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Ma
xi

mu
m

Al
lo

wa
bl

e
Pe

rt
ur

ba
ti

on

0.0

0.2

0.4

0.6

0.8

Figure 7: Heatmap showing the percentage of evasive flows
for a given bound, when 𝑛 features are attacker-controlled.

56789101112
Number of Controllable Features

0.0

0.2

0.4

0.6

0.8

1.0

Un
sa
ti
sf
ia
bl
e
Sp
ec
if
ic
at
io
ns
 (
%)

Figure 8: Effectiveness of the three feature-specific strategies
at various levels of maximum allowed perturbation.

verification may vary greatly which is why the described heuristics
are important. Delaying packets is the most effective strategy by far;
both delaying several packets by small amounts, or a few packets
by large amounts result in realisable counter-examples. In contrast,
when padding packets, the specifications require far larger bounds
in order to produce counter-examples whilst exclusively flipping
TCP flags fails to produce any evasive traffic whatsoever.

Although targetting specific classes of features is more effective
than random features, we note that there are cases where, depend-
ing on attacker constraints, the initial general search is worthwhile.
For instance, our process does not find a single evasive flow when
only three IAT features are bounded from above by 0.5. However,
our more general process does find such counterexamples, provided
other features are also allowed to be perturbed.

Importantly, we see that the effectiveness of the evasion strate-
gies varies widely depending on the initial seed flow, allowing us
to infer model failure modes with high granularity. For certain
flows, delaying packets is the only strategy that produces counter-
examples whereas, for others, alternative strategies also work.

4.4 Effectiveness of Local Robustness
Experiment. Adversarial training is a state-of-the-art technique,

typically used to strengthen local robustness and is a direct alterna-
tive to enforcing global constraints. However, there is little reason
for local robustness to attenuate concept drift as our approach does.
Instead, the cross-dataset generalisation performance is a conse-
quence of enforcing global robustness constraints that accurately
reflect the underlying structure of malicious traffic, rather than

SAC ’25, March 31-April 4, 2025, Catania, Italy Flood et al.

robustness in general. To demonstrate the difference, we train the
NIDS to be locally robust about each input point. We use PGD
with 𝜖 = 0.1 to train the model adversarially and verify that the
model is indeed locally robust using Vehicle before evaluating its
cross-dataset generalisation.

Results. We successfully train a model that is verifiably locally
robust about each input point. However, this provides absolutely no
benefit to cross-dataset generalisation, with the locally robust model
achieving an F1 score of only 0.5792 on the test dataset. As local
perturbations do not adhere to the underlying structure of network
traffic, the local adversarial examples contain little information
about out-of-distribution inputs, unlike our global bounds.

4.5 Comparison with BARS
Experiment. As far as we are aware, we are the first to apply

deterministic neural network verification to NIDS. As a comparison,
we contrast this verification approach to BARS [40], a probabilistic
certified robustness methodology for NIDS based on randomised
smoothing. For a given model 𝑁 and input 𝑥 , BARS produces tar-
geted noise generator a 𝐺𝑁 and robustness region 𝑟𝑥 about 𝑥 such
that smoothed model �̂� is certifiably robust when sufficient points
are sampled from within 𝑟𝑥 .

Although BARS is situated in a similar domain, its goals and
approach differs from our work significantly as it focuses on local
adversarial perturbations. Following from Section 4.4, we note that
both global specifications and domain constraints are difficult to
represent via 𝜖 − 𝛿 balls. Rather than supercede BARS, we intend
to show how verification differs from certified robustness.

We apply BARS to a DoS NIDS, with train and test data gen-
erated according to our cross-dataset generalisation procedure in
Section 4.1, producing certified radii for the malicious class.

Results. For the globally verifiable model, we see that BARS
does not correctly calculate robustness regions. As a result, the
BARS robustness curve is constant for all values of 𝜖 . Investigating
the noise produced by𝐺𝑁 , we see that features are overwhelmingly
perturbed to be less than 0 and fail to change model output when
clipped between 0 and 1. As a result, each 𝑟𝑥

𝑖
is significantly greater

than 1, providing little insight into the actual robustness region of
𝑥 . Whilst BARS works as intended in more general settings, in this
instance, the disconnect between BARS robustness regions and the
realisable values of network traffic — which are easily expressed in
Vehicle specifications — impedes its performance.

4.6 Specification Transferability
Experiment. As our counter-example driven approach requires

verifying models repeatedly, we use a small model to make this
feasible: each counter-example takes approximately 30 seconds.
However, verifying larger models is useful. Thus, after defining the
robustness regions and specifications using the small base model,
we train seven additional networks of increasing size, up to approx-
imately 2.8 million parameters. This is a similar scale to models
in verification competitions [6]. As increasing model depth leads
to exponentially greater verification time, we limit models to four
hidden layers. We train these models according to the original

robustness regions before attempting to verify the GoodHTTP speci-
fication, determining whether specifications and robustness regions
are transferable between models of different sizes.

Table 2: Neural Network Parameters Versus Verification Time

Parameters Time (s) Verifiable?
43776 41 ✓
186498 47 ✓
252290 53 ✓
449154 239 ✓
733314 910 ✓
963330 1023 ✓
1750274 5661 ✓
2842882 19708 ✓

Results. We find that the GoodHTTP specification transfers per-
fectly across all models tested. For each model architecture, we
achieve perfect adversarial accuracy during training, resulting in
models that adhere to GoodHTTP without any additional modifica-
tion of robustness regions or specifications. Whilst we only have
to perform this final process once, verifying larger models is more
onerous; Table 2 demonstrates the tradeoff between model size and
verification time.

4.7 Robustness of Global Constraints
Experiment. When we train models adversarially, we gener-

ate adversarial samples based on bounds defined in the specifica-
tions, constraining features to various degrees. It is possible that
the bounds are overly restrictive and that local-but-unconstrained
perturbations can still degrade model performance. If model perfor-
mance degrades when naive perturbations are applied to features
that we would expect to vary naturally, such as inter-arrival times
or packet sizes, this suggests that the models are still overfitting to
the training data, despite our attempts otherwise.

To verify that this isn’t happening and to investigate the re-
lationship between our global bounds and unconstrained, local
perturbations, we randomly select a subset of performant models
from Section 4.1 (each achieving an accuracy of 0.85+ on the DoS
test data) and perturb data via the Fast Gradient Sign [22] and the
Momentum Iterative [15] Method.

0.5

1.0

Ad
v

Ac
c

Pe
rc

~0.0 ~0.11 ~0.26 ~0.44

0.05 0.10

Eps

0.5

1.0

Ad
v

Ac
c

Pe
rc

~0.61

0.05 0.10

Eps

~0.79

0.05 0.10

Eps

~0.95

0.05 0.10

Eps

~1.0
Attack

FGSM
MIM

Figure 9: Robustness of the globally constrained models ver-
sus unconstrained, local adversarial attacks. Facet titles re-
flect the approximate adversarial training accuracy.

Formally Verifying NIDS SAC ’25, March 31-April 4, 2025, Catania, Italy

Results. We present our results in Figure 9. Training on adver-
sarial samples within the specification clearly improves adversarial
robustness against the fast gradient sign method, with models scor-
ing highly on adversarially generated data maintaining near perfect
accuracy. Whilst the effect is less pronounced for the momentum
iterative method, we still see benefits for models with high accuracy
on the adversarial training data. 4

4.8 Coverage Metrics
Experiment. Specifications for DNN verification are usually

assumed to be correct. In contrast, in this work, since the specifica-
tions are manually engineered, we go a step further and validate
them via coverage metrics. Specifically, we check the percentage of
flows in the training/test data that satisfy specification bounds.

Table 3: Generalisability of the specifications. Note that ‘Ma-
licious*’ is calculated on verified attack specifications.

Attack Property Dataset Coverage (#) Coverage (%)

DoS Benign Train 13488/189796 7.11
DoS Benign Test 4696/211174 2.22

DoS Malicious Train 190507/190663 99.92
DoS Malicious Test 221801/221801 100.00

DoS Malicious* Train 125087/190663 65.61
DoS Malicious* Test 183727/221801 82.83

SSH Benign Train 748/6876 10.88
SSH Benign Test 123/102624 0.12

SSH Malicious Train 6964/6964 100.00
SSH Malicious Test 108639/108639 100.00

SSH Malicious* Train 2851/6964 40.94
SSH Malicious* Test 62402/108639 57.44

Results. Table 3 reports the results of the validation checks. No-
tably, the complete specifications for malicious traffic cover ≈100%
of the malicious traffic from the datasets. Furthermore, while de-
creasing, the verifiable specifications still cover a high percentage
of the datasets (from 40.94% to 82.83%). Lastly, while the coverage
of the benign traffic is much lower (from 0.12% to 10.88%), it is an
encouraging result as the specifications target only subsets of the
benign data, such as SSH traffic, which make up a comparatively
small percentage of the dataset. These results confirm the validity of
the specifications and that they reflect actual traffic in our datasets.

5 LIMITATIONS
Our approach has several limitations. Current verification frame-
works cannot verify deep networks or complex architectures; mod-
els in state-of-the-art verification competitions have between ap-
proximately 0.5 and 100 million parameters [6]. Our process also
requires repeatedly querying models to produce counterexamples,
4We note that Figure 9 violates some of aspects of the Carlini et al.’s evaluation
checklist [7], such as Facet 7 increasing in accuracy for larger 𝜖 . However, similar to
Section 4.5 this is an artefact of clipping the input data. Otherwise, the adversarial
attacks behave as expected.

limiting model parameters and depth. Future improvements should
improve this situation [42].

Section 3 mentioned that increasing detail of specifications by
addingmore disjunctions can lead to long verification times, so spec-
ifications that carve up the input space too finely become impracti-
cal. To account for this, we write specification reflecting commonly
occurring feature combinations in the training data, as discussed
in Section 3.2. In any case, the human-in-the-loop effort also lim-
its how complex we would want specifications to become; there
is a similarity with the use of human-written signatures for IDS
which have limits on scope and complexity. Ultimately, because
there can be no complete specification of malicious traffic, there
is a trade-off between what we want the model to learn and the
global constraints we want to specify.

6 RELATEDWORK
To the best of our knowledge, while research exists on security
applications of DNN verification [5] and on probabilistic verification
for DNN-based NIDS [40], no prior work has explored the use of
verification frameworks with machine learning-based NIDS.

ML-based NIDS are a well-trodden topic with many competing
architectures. Often, classifiers make significant modifications to
‘off-the-shelf’ models, including CNN-based [16, 41], autoencoder-
based [32] and graph-based [38] approaches. These architectures
are too complex for current complete verification methods, making
behavioural guarantees difficult.

Much work exists on robustness and adversarial examples for
NIDS. Zhang et al. [43] provide a thorough overview of attacks and
defenses applied to NIDS, including the HopSkipJump attack [10]
and ensemble adversarial training [37].

NIDS models are often trained and tested on the same public
dataset, but unfortunately many commonly used datasets have
flaws [17, 20]. Even simple models with restricted feature sets can
be highly performant on common datasets, as demonstrated by
Jacobs et al. [25]. But these performant models fail to generalise to
other datasets or attacks when withheld as test sets [2, 9]. We aim
to improve generalisation via a specification-driven approach.

Existing research on DNN verification primarily focuses on local
robustness [8] in computer vision [33] . In contrast, global prop-
erties are defined over regions of space not parameterised by in-
puts [27], making them more general and challenging to prove.
Altogether, global properties are less commonly considered in re-
search, with some exceptions. Katz et al. [28] define global robust-
ness specifications for ACAS Xu [26]. Chen et al. [11] also verify
global properties for security classifiers. However, unlike our work,
their global properties are unrelated to the underlying mechanism
of attacks and only bound model outputs, rather than inputs.

7 CONCLUSION
To our knowledge, we are the first to investigate the applications of
neural network verification in the network intrusion domain. We
do this non-trivially, aiming to improving adversarial robustness,
cross-dataset generalisation as well as uncover model weaknesses
and failure modes. We design our models, feature sets and verifica-
tion criteria from the ground up to minimise the effects of low data
diversity via targeted restriction and expansion of our input data.

SAC ’25, March 31-April 4, 2025, Catania, Italy Flood et al.

We developed models with considerably improved cross-dataset
and cross-attack generalisation compared to standard approaches,
whilst gaining strong mathematical guarantees about our models’
behaviour in regions of the input space. Our specifications allow
us to reason about the complex feature interactions of our models,
thanks to choosing a tractable feature set and using the high-level
specification language Vehicle. Our work provides insight into how
verification frameworks alongside data generation techniques can
improve model behaviour. Neural network verification is an emerg-
ing area of research and there are many possible avenues for future
work, using other tools, as well as exploring local specifications,
considering more complex attacks and generalisation conditions.

ACKNOWLEDGEMENTS
We thank our reviewers for their comments which helped im-
prove this paper. This work was partially funded by EPSRC grant
EP/T027037/1.

REFERENCES
[1] Giuseppina Andresini, Feargus Pendlebury, Fabio Pierazzi, et al. 2021. Insomnia:

Towards concept-drift robustness in network intrusion detection. In Proceedings
of the 14th ACM workshop on artificial intelligence and security.

[2] Giovanni Apruzzese, Luca Pajola, and Mauro Conti. 2022. The cross-evaluation of
machine learning-based network intrusion detection systems. IEEE Transactions
on Network and Service Management 19, 4 (2022), 5152–5169.

[3] Stanley Bak, Changliu Liu, and Taylor Johnson. 2021. The second international
verification of neural networks competition: Summary and results. arXiv preprint
arXiv:2109.00498 (2021).

[4] Teodora Baluta, Zheng Leong Chua, Kuldeep S Meel, et al. 2021. Scalable quanti-
tative verification for deep neural networks. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 312–323.

[5] Teodora Baluta, Shiqi Shen, Shweta Shinde, et al. 2019. Quantitative verification
of neural networks and its security applications. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security. 1249–1264.

[6] Christopher Brix, mark Niklas Müller, Stanley Bak, et al. 2023. First three years
of the international verification of neural networks competition. International
Journal on Software Tools for Technology Transfer 25, 3 (2023), 329–339.

[7] Nicholas Carlini, Anish Athalye, Nicolas Papernot, et al. 2019. On evaluating
adversarial robustness. arXiv preprint arXiv:1902.06705 (2019).

[8] Marco Casadio, Ekaterina Komendantskaya, Matthew L Daggitt, et al. 2022.
Neural network robustness as a verification property: a principled case study. In
International Conference on Computer Aided Verification. Springer, 219–231.

[9] Marta Catillo, Andrea Del Vecchio, Antonio Pecchia, et al. 2021. A Critique
on the Use of Machine Learning on Public Datasets for Intrusion Detection.
In International Conference on the Quality of Information and Communications
Technology. Springer, 253–266.

[10] Jianbo Chen, Michael I Jordan, and Martin J Wainwright. 2020. Hopskipjumpat-
tack: A query-efficient decision-based attack. In 2020 IEEE Symposium on Security
and Srivacy (SP). IEEE, 1277–1294.

[11] Yizheng Chen, Shiqi Wang, Yue Qin, et al. 2021. Learning security classifiers with
verified global robustness properties. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security. 477–494.

[12] Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. 2017. Maximum
resilience of artificial neural networks. In Automated Technology for Verification
and Analysis: 15th International Symposium, ATVA 2017, Pune, India, October 3–6,
2017, Proceedings 15. Springer, 251–268.

[13] Henry Clausen, Robert Flood, and David Aspinall. 2019. Traffic generation using
containerization for machine learning. In Proceedings of the 2019 Workshop on
DYnamic and Novel Advances in Machine Learning and Intelligent Cyber Security.

[14] Matthew L Daggitt, Wen Kokke, Robert Atkey, et al. 2024. Vehicle: Bridging the
Embedding Gap in the Verification of Neuro-Symbolic Programs. arXiv preprint
arXiv:2401.06379 (2024).

[15] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, et al. 2018. Boosting adversarial
attacks with momentum. In Proceedings of the IEEE conference on computer vision
and pattern recognition. 9185–9193.

[16] Roberto Doriguzzi-Corin, Stuart Millar, Sandra Scott-Hayward, et al. 2020. LUCID:
A practical, lightweight deep learning solution for DDoS attack detection. IEEE
Transactions on Network and Service Management 17, 2 (2020), 876–889.

[17] Gints Engelen, Vera Rimmer, and Wouter Joosen. 2021. Troubleshooting an
Intrusion Detection Dataset: the CICIDS2017 Case Study. In 2021 IEEE Security

and Privacy Workshops (SPW). IEEE, 7–12.
[18] Claudio Ferrari, Mark Niklas Mueller, Nikola Jovanović, et al. 2022. Complete Ver-

ification via Multi-Neuron Relaxation Guided Branch-and-Bound. In International
Conference on Learning Representations.

[19] Thomas Flinkow, Barak A. Pearlmutter, and Rosemary Monahan. 2024.
Comparing Differentiable Logics for Learning with Logical Constraints.
arXiv:2407.03847 [cs.LO]

[20] Robert Flood, Gints Engelen, David Aspinall, et al. 2024. Bad Design Smells in
Benchmark NIDS Datasets. In 2024 IEEE 9th European Symposium on Security and
Privacy (EuroS&P). IEEE, 658–675.

[21] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, et al. 2018. Ai2: Safety
and robustness certification of neural networks with abstract interpretation. In
2018 IEEE symposium on security and privacy (SP). IEEE, 3–18.

[22] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and
Harnessing Adversarial Examples. arXiv:1412.6572 [stat.ML]

[23] Dongqi Han, Zhiliang Wang, Ying Zhong, et al. 2021. Evaluating and improving
adversarial robustness of machine learning-based network intrusion detectors.
IEEE Journal on Selected Areas in Communications 39, 8 (2021), 2632–2647.

[24] Soumyadeep Hore, Jalal Ghadermazi, Diwas Paudel, et al. 2023. Deep pack-
gen: A deep reinforcement learning framework for adversarial network packet
generation. arXiv preprint arXiv:2305.11039 (2023).

[25] Arthur S Jacobs, Roman Beltiukov, Walter Willinger, et al. 2022. AI/ML for
Network Security: The Emperor has no Clothes. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security. 1537–1551.

[26] Kyle D Julian, Jessica Lopez, Jeffrey S Brush, et al. 2016. Policy compression
for aircraft collision avoidance systems. In 2016 IEEE/AIAA 35th Digital Avionics
Systems Conference (DASC). IEEE, 1–10.

[27] Anan Kabaha and Dana Drachsler Cohen. 2024. Verification of Neural Net-
works’ Global Robustness. Proceedings of the ACM on Programming Languages 8,
OOPSLA1 (2024), 1010–1039.

[28] Guy Katz, Clark Barrett, David L Dill, et al. 2017. Reluplex: An efficient SMT
solver for verifying deep neural networks. In International conference on computer
aided verification. Springer, 97–117.

[29] Linyi Li, Tao Xie, and Bo Li. 2023. Sok: Certified robustness for deep neural
networks. In 2023 IEEE Symposium on Security and Privacy (SP). IEEE, 1289–1310.

[30] Gordon Fyodor Lyon. 2009. Nmap network scanning: The official Nmap project
guide to network discovery and security scanning. Insecure.

[31] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, et al. 2018. Towards
Deep Learning Models Resistant to Adversarial Attacks. In International Confer-
ence on Learning Representations.

[32] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, et al. 2018. Kitsune: an en-
semble of autoencoders for online network intrusion detection. arXiv preprint
arXiv:1802.09089 (2018).

[33] Kexin Pei, Linjie Zhu, Yinzhi Cao, et al. 2017. Towards practical verification
of machine learning: The case of computer vision systems. arXiv preprint
arXiv:1712.01785 (2017).

[34] Iman Sharafaldin, Arash Habibi Lashkari, Ali A Ghorbani, et al. 2018. Toward
generating a new intrusion detection dataset and intrusion traffic characterization.
ICISSp 1 (2018), 108–116.

[35] Ryan Sheatsley, Blaine Hoak, Eric Pauley, et al. 2021. On the robustness of domain
constraints. In Proceedings of the 2021 ACM SIGSAC conference on computer and
communications security. 495–515.

[36] Vincent Tjeng, Kai Xiao, and Russ Tedrake. 2019. Evaluating robustness of
neural networks with mixed integer programming. n International Conference on
Learning Representations, (2019).

[37] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, et al. 2017. Ensemble adver-
sarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204 (2017).

[38] Andrea Venturi, Matteo Ferrari, Mirco Marchetti, et al. 2023. ARGANIDS: a
novel network intrusion detection system based on adversarially regularized
graph autoencoder. In Proceedings of the 38th ACM/SIGAPP Symposium on Applied
Computing. 1540–1548.

[39] JunnanWang, Liu Qixu,WuDi, et al. 2021. Crafting adversarial example to bypass
flow-&ML-based botnet detector via RL. In Proceedings of the 24th International
Symposium on Research in Attacks, Intrusions and Defenses.

[40] Kai Wang, Zhiliang Wang, Dongqi Han, et al. [n. d.]. BARS: Local Robustness
Certification for Deep Learning based Traffic Analysis Systems.

[41] Wei Wang, Yiqiang Sheng, Jinlin Wang, et al. 2017. HAST-IDS: Learning hierar-
chical spatial-temporal features using deep neural networks to improve intrusion
detection. IEEE access 6 (2017), 1792–1806.

[42] Haoze Wu, Omri Isac, Aleksandar Zeljić, et al. 2024. Marabou 2.0: A Versatile
Formal Analyzer of Neural Networks. arXiv:2401.14461 [cs.AI]

[43] Chaoyun Zhang, Xavier Costa-Perez, and Paul Patras. 2022. Adversarial attacks
against deep learning-based network intrusion detection systems and defense
mechanisms. IEEE/ACM Transactions on Networking 30, 3 (2022), 1294–1311.

https://arxiv.org/abs/2407.03847
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/2401.14461

	Abstract
	1 Introduction
	2 Background
	2.1 Network Intrusion Detection
	2.2 Neural Network Verification
	2.3 Adversarial Robustness in NIDS

	3 Methodology
	3.1 Global vs. Local Specifications
	3.2 Principles for Global Specifications
	3.3 Feature Set & Data

	4 Applications of Verification
	4.1 Cross-dataset Generalisation
	4.2 Cross-attack Generalisation
	4.3 Generating Realisable Evasive Traffic via Counterexamples
	4.4 Effectiveness of Local Robustness
	4.5 Comparison with BARS
	4.6 Specification Transferability
	4.7 Robustness of Global Constraints
	4.8 Coverage Metrics

	5 Limitations
	6 Related Work
	7 Conclusion
	References

