Henry Clausen, David Aspinall

Controlling traffic microstructures for model probing

SecureComm 2021

Machine learning progress

Model evaluation vs probing

Machine learning progress in NID

NID-datasets

- Sparse labelling
- Difficult to read
- Hard to alter specific structures

Structure

- NID probing example
- Influences on traffic microstructures
- DetGen: Controlling traffic microstructures
- Determinism of DetGen

NID probing example

- Packet-stream LSTM-classifier by Hwang et al. 2019
- CICIDS-17 data (85%)
 + DetGen traffic (15%)
 - 96% DR, 2.7% FPR
- Probe with randomized labelled traffic
- Correlation between errors and latency

LSTM-model activity classification

NID probing example

- Generate two SQL-injection connections
 - Constant microstructures
 - One with high latency

- Retransmission sequences deplete activation
- Filter RT-sequences

 \rightarrow 98% DR and 0.4% FPR

informatics

NID probing example

- Generate two SQL-injection connections
 - Constant microstructures
 - One with high latency

- Retransmission sequences deplete activation
- Filter RT-sequences

 \rightarrow 98% DR and 0.4% FPR

LSTM-model activity classification

- Short-term structures at packet or connection level
- Manifest themselves in
 - IATs,
 - Packet sizes
 - Flags
 -
- Used by state-of-the-art models such as DeepCorr, Kitsune etc.

- Application/task
- Implementation version
- Network congestion
- Host load
- Caching/repetition
- Background traffic

- Application/task
- Implementation version
- Network congestion
- Host load
- Caching/repetition

Background traffic

FTP-connection comparison under load

- Application/task
- Implementation version
- Network congestion
- Host load
- Caching/repetition
- Background traffic

Time	Source-IP	Destination-IP	Dest. Port
13:45:56.8	192.168.10.9	192.168.10.50	21
13:45:56.9	192.168.10.9	192.168.10.50	10602
13:45:57.5	192.168.10.9	69.168.97.166	443
13:45:59.1	192.168.10.9	192.168.10.3	53
13:46:00.1	192.168.10.9	205.174.165.73	8080

Scope:

- Precise control over traffic influence factors
- Ground-truth labels on traffic origins
- Scalability and modularity

Design:

- Scripting of diverse scenarios + subscenarios
- Isolation through containerization
- Simulation of external effects
- Randomisation at every stage

More details:

- "Traffic generation using containerization", 2019
- github.com/detlearsom/DetGen

Design:

- Scripting of diverse scenarios + subscenarios
- Isolation through containerization
- Simulation of external effects
- Randomisation at every stage

- "Traffic generation using containerization", 2019
- github.com/detlearsom/DetGen

Determinism of DetGen

How well can DetGen control traffic influence factors?

Is containerisation improving control?

Experiment:

- Generate traffic with constant settings
- Measure sample similarity
- Metrics:
 - Connection (size, IATs, etc.)
 - Packet seq.
 - Connection seq.

Determinism of DetGen

Determinism of DetGen

Regular HTTP connection comparison

Conclusion

- Targeted probing can identify model failures
- Labelling for misclassification correlation
- Control traffic microstructures
 - Randomise for broad probing
 - Reduce variations for close examination

github.com/detlearsom/DetGen

Thank you for your attention!

IN SECURITIES

(C) AMANDA ROUSSEAU

Projection sensitivity

- Kitsune 2018
 - Seq-encoding for anomaly detection
 - Botnet, man-in-middle, Brute-force,...
- Traffic groups with constant settings
- Projections should be consistent
- Sensitive to
 - connection IATs
 - half-open connections

Projection sensitivity

- Kitsune 2018
 - Seq-encoding for anomaly detection
 - Botnet, man-in-middle, Brute-force,...
- Traffic groups with constant settings
- Projections should be consistent
- Sensitive to
 - connection IATs
 - half-open connections

Projected traffic dispersion along major axis

Projection sensitivity

- Kitsune 2018
 - Seq-encoding for anomaly detection
 - Botnet, man-in-middle, Brute-force,...
- Traffic groups with constant settings
- Projections should be consistent
- Sensitive to
 - connection IATs
 - half-open connections

Controlling traffic microstructures

DetGen Clausen et al., SecureComm 2021

- Traffic generation tool
- Controlling and labelling microstructures:
 - Performed task/application
 - Implementations
 - Congestion
 - Failures
 - ...
- github.com/detlearsom/DetGen

