
Traffic generation using 
Containerization for Machine 
Learning

Henry Clausen, Robert Flood, David Aspinall



Contribution

ML applications offer significant 
progress to intelligent network 
security

Development currently held back 
by:
• lack of real-world data
• limitations of synthetic testbeds

We developed Detgen:

• Traffic generation suite based 
on containerized applications

• Four main improvements 
through program isolation and 
container independence



Agenda
(1) ML and network data

(2) Problems in current datasets

(3) Containerization

(4) Traffic generation suite

(5) Example use-case

(6) Limitation & conclusion



Agenda
(1) ML and network data

(2) Problems in current datasets

(3) Containerization

(4) Traffic generation suite

(5) Example use-case

(6) Limitation & conclusion



ML in Network Security

Intrusion detection:
• Misuse detection
• Anomaly detection
• Signature mining
• Temporal models
• …

Other applications:
• Traffic classification
• Vulnerability discovery
• Protocol verification
• …

1

Wagner et al., 2005 Yen et al., 2012



Data

ML heavily dependent on datasets:
• Design
• Model training
• Evaluation

Format:
• raw packets
• payload
• meta-data

• network flow

1



Data

Challenges for a dataset:

• lack of standardized 

conditions

• concept drift

• heterogeneity of traffic

• scarcity of attack traffic

Furthermore:

• privacy & security concerns

• attack isolation not guaranteed

à lack of suitable real-world 
datasets

1



Synthetic dataset generation

Testbeds:

• Virtual machines arranged in 
isolated network

• Important services follow 
scripted tasks

• Data collected at router

UGR-16 testbed

1

Datasets: CIC-IDS 17, ISCX, UGR 16, UNSW-NB 15
Older: KDD 99, DARPA 98



Agenda
(1) ML and network data

(2) Problems in current datasets

(3) Containerization

(4) Traffic generation suite

(5) Example use-case

(6) Limitation & conclusion



Problems with current datasets

Successful ML application is held back by:

• Low traffic variation

• Lack of ground truth labels

• Limited size

• Static generation

2



Low traffic variation

Scripted activities:

• little exploration of protocol range

Example CIC-IDS 17:

• 99% of FTP-connections download 
same file (’wikipedia/encryption’)

Technical variations neglected:

• network congestion

• faults 
• out-of-order arrivals
• connection restart
• ….

2



Low traffic variation
2

Low variation leads to:

• homogenous data:

• models that do not 

generalise/overfit

• overoptimistic detection rates



Lack of ground truth

Association between traffic events 
and generating activity often 
impossible!

• Multiple programs on one machine

• No port binding

2



Static design Limited size

Protocol UNSW-NB 
15

CIC-IDS 
17

ISCX MAWI 

HTTP 196195 276405 2372 156179

SSL 540 285760 141 591551

DNS 372748 1820105 200009 1581858

X509 459 2758590 331 Unknown

FTP 111685 5540 1989 278

SSH 31320 5600 434 5503

IRC 202 0 27 Unknown

SMTP 44455 0 125 4601

Traffic for individual protocols can be 
very small!

Set-up and capture performed once

Updates for specific protocols not 
possible

àoutdated traffic

àno robustness to concept drift

2



Agenda
(1) ML and network data

(2) Problems in current datasets

(3) Containerization

(4) Traffic generation suite

(5) Example use-case

(6) Limitation & conclusion



Containerization

Programs/process as standalone 
virtualised standard units 

Advantages:
• lightweight
• runs uniformly
• safe through isolation

Containers can be arranged in 
virtual networks

3



Agenda
(1) ML and network data

(2) Problems in current datasets

(3) Containerization

(4) Traffic generation suite

(5) Example use-case

(6) Limitation & conclusion



Design principles

• High degree of traffic variation

• Ground truth labels through activity 
isolation

• Scalability

• Modularity

4



Capture scenario

Arrangement of set of 
containers to provide a service 
and perform specific activity

• Each scenario saved in Docker-
compose file

• Execution follows execution-script

• Traffic from several scenarios 
coalesced into whole dataset

4



Capture scenario

Arrangement of set of 
containers to provide a service 
and perform specific activity

Ground truth

• traffic captured for each
container

• scenario follows an execution 
script

• virtualisation shields from 
external influence

4



Capture scenario

Arrangement of set of 
containers to provide a service 
and perform specific activity

Modular

• scenarios independent of each 
other

• easy to add and update 
scenario

Scalable

• repeatable & consistent

• independent of host system

• lightweight

4



Variation is achieved through …

Exploration of service range
• Different tasks (file 

retrieval, sending, …)
• Login-failures, wrong file, 

…

Input randomisation
• passwords
• transmitted files
• bash-commands
• …

TC/NetEm
• artificial packet delays, 

corruption, drops
• calibrated to emulate 

WAN characteristics 

4



Variation is achieved through …
4



Scenario implementation

(1) select primary and 
secondary containers

(2) identify different 
subscenarios of service

(3) identify variable input 
values and appropriate 
ranges

(4) create Docker-compose 
file

(5) write execution script

4



Current scenario suite

Scenario #Sub Scenario #Sub Scenario #Sub

Ping 1 File-sync 6 Time sync 3

Web server 4 SMTP 5 Music stream 5

SSH 7 IRC 2 Video stream 1

FTP 12 BitTorrent 4 WAN wget 5

Web scraper 2 SQL database 4

SSH bforce 3 Goldeneye DoS 1 Heartbleed 1

URL fuzz 1 Slow DoS 4 Backdoor 3

Auth bforce 2 Mirai 3 XXE 3

SQL-injection 2 Traffic relay 5 Crypto-miner 1

Further extension 
planned!

4



Agenda
(1) ML and network data

(2) Problems in current datasets

(3) Containerization

(4) Traffic generation suite

(5) Example use-case

(6) Limitation & conclusion



Example – stepping stone detection 

Relayed attack to hide 
origin of attacker

Connection pair correlation 
for detection

…

5



Example – stepping stone detection 

Aim: 
• train Conv. NN to 

detect correlation 

Problems: 
• needs a lot of data
• prone to overfitting
• different noise levels 

for evaluation
DeepCorr 2018, Nasr et al.

5



Docker data 

• 50,000 connection 
pairs

• 3 different scenarios

• randomized 
input/congestion

• varied noise levels 
with labels

SSH- Client SSH-Server

Tunnel
Exit

Tunnel
Step

Tunnel
Entrance

Web-scraper

Tunnel
Exit

Tunnel
Step

Tunnel
Entrance

5



Agenda
(1) ML and network data

(2) Problems in current datasets

(3) Containerization

(4) Traffic generation suite

(5) Example use-case

(6) Limitation & conclusion



Limitations

Not replicated well:

• Network-wide distribution
• long-term temporal structures 

Data volume huge
• preprocessing required

Manual implementation

6



Conclusion

• Our traffic generation suite fuels ML through:
• High degree of traffic variability
• Ground truth labels through activity isolation
• Scalability
• Modularity

• github.com/detlearsom/detgen/

• Future work:
• capture of syslogs
• streamlined data coalescence

6



Reproducability WAN-emulation
5



4



4



Traffic example without chaff and delays



Traffic example without chaff and delays


