Henry Clausen, David Aspinall, Michael Gibson Evading stepping-stone detection with enough chaff

THE UNIVERSITY of EDINBURGH **informatics**

B.

EPSRC Pioneering research and skills The Alan Turing Institute

Contribution

Large public Stepping-stone dataset:

- 90,000 connection pairs
- Chaff/delay tactics
- realistic setup

Re-evaluation of eight SSDmethods

- Fair comparison of capabilities
- different settings
- Detection rates and

AUC-scores

nformo

Stepping-stone

Relay of attack via "stepping-stone"

- Hide attack origin
- Access protected resources
- Interactive access

Tools

- SSH-tunnels
- Netcat backpipe
- SOCKS proxy

•••

Usually encrypted

- Sensor records incoming and outgoing connections
- Measure correlation between pairs

Goal

- Identify stepping-stones early before attacker
 - reaches target
 - exfiltrates data
- Trace attack back to origin

Most common techniques:

- Watermarking
- Packet correlation

Evasive techniques

- Transfer delays
- Chaff packets
- Repacketisation
- Flow splitting

• Anomaly-detection

Most common techniques:

- Watermarking
- Packet correlation

Evasive techniques

- Transfer delays
- Chaff packets
- Repacketisation
- Flow splitting

- RTT-based
- Anomaly-detection

Evaluation problems

• No public data!

- Widespread use of self-generated data
 - Simplistic attack scenario
 - restrictive evasive tactics
 - Unrealistic background traffic

• No standard on number of packets

 Setup shielded from other influences

 \rightarrow Impossible to compare detection rates

Data generation set-up

- Interactive SSH-session
 - relayed using SSH-tunnels
- SSH-script
 - commands drawn randomly
 - randomized inputs
 - sleep intervals to simulate reaction times
- Containers for reproducibility

Data generation set-up

- Interactive SSH-session
 - relayed using SSH-tunnels
- SSH-script
 - commands drawn randomly
 - randomized inputs
 - sleep intervals to simulate reaction times
- Containers for reproducibility

a)

Data generation set-up

NetEm to emulate network settings

Chaff:

- Netcat
- mimics stream buffering¹
 - Packet IAT in $\left[\frac{d_{\rm C}}{2}, d_{\rm C}\right]$

Jitter delays:

- NetEm
- mimics stream buffering¹
- Δt in $[0, d_D]$
 - *d*_D up to 1500ms

¹ Padhye et al. (2010)

Evaluation data

Connection pairs from S_N

• 1,400 packets

	Label	#conn	purpose
SS data	BA	30,000	Baseline attack
	DA	30,000	Delays with varying $d_{\rm D}$
	CA	30,000	Chaff with varying $d_{\rm C}$
Background data	CAIDA	60.000	General background
	SSH	20.000	Similar to attack commands
	Multim.	20.000	Similar to chaff pert.

Selected methods

Label	ТР	FP Robustness		Category	
PContext (2011)	100%	0%	jitter/chaff	Packet correlation	
DeepCorr (2018)	90%	0.0002%	small jitter	Noural potworks	
WuNeur (2010)	100%	0%	-	ησαι αι πετίνοι κα	
Rwalk (2015)	-	-	chaff	DTT based	
Crossover (2016)	85%	5%	-	KTT-Daseu	
Ano1 (2011)	99 %	1%	jitter/chaff	Anomaly based	
Ano2 (2011)	95 %	0%	jitter/chaff	Anomaly-based	
WM (2011)	100%	0.5%	jitter	Watermarking	

ROC-curves on dataset BA

Disproves chaff robustness claims by PCorr, RTT1, and both anomaly methods!

Limitations

• No behavioural/graph-based models

• No store-forward-stepping stones

• No flow-splitting

• Data might need updates for future methods

Conclusion

- Large public dataset
 - Realistic interactions
 - Evasive tactics
 - github.com/detlearsom/detgen/stepping-stone-data
- Evaluation of current state-of-the-art
 - Lower overall detection rates
 - Lack of robustness against chaff
 - Watermarking and deep-learning performs best

Additional results

Detection rates on chain length dataset CL

WAN-influence

	Value	Deviation from average				
		Deep Corr	WuNe ur	RWalk	COver	WM
RTT	5ms	-0.2%	+41.3%	-42.3%	-36%	+0.03%
	70ms	-5.6%	-5.8%	+35.1%	+51%	-2.2%
Packet loss	0%	+1.2%	+1.3%	+2.1%	+4.3%	+0.02%
	7%	- 9. 1%	-1.1%	-3.1%	-7.3%	-9.7%

- (1) ML and network data
- (2) Problems in current datasets
- (3) Containerization
- (4) Traffic generation suite
- (5) **Example use-case**
- (6) Limitation & conclusion

the university of edinburgh

- (1) ML and network data
- (2) Problems in current datasets
- (3) Containerization
- (4) Traffic generation suite
- (5) Example use-case
- (6) Limitation & conclusion

- (1) Stepping-stones and detection
- (2) Data generation process
- (3) Evaluation
- (4) Limitation & conclusion

- (1) Stepping-stones and detection
- (2) Data generation process
- (3) Evaluation
- (4) Limitation & conclusion

- (1) Stepping-stones and detection
- (2) Data generation process
- (3) Evaluation
- (4) Limitation & conclusion

- (1) Stepping-stones and detection
- (2) Data generation process
- (3) Evaluation
- (4) Limitation & conclusion

- (1) Stepping-stones and detection
- (2) Data generation process
- (3) **Evaluation**
- (4) Limitation & conclusion

Limitations

Not replicated well:

- Network-wide distribution
- long-term temporal structures

Data volume huge

preprocessing required

Manual implementation

Conclusion

• Our traffic generation suite fuels ML through:

- High degree of traffic variability
- Ground truth labels through activity isolation
- Scalability
- Modularity
- github.com/detlearsom/detgen/
- Future work:
 - capture of syslogs
 - streamlined data coalescence

Containerization

docker

Programs/process as standalone virtualised standard units

Advantages:

- lightweight
- runs uniformly
- safe through isolation

Containers can be arranged in virtual networks

Containerized Applications

Most common techniques:

• Watermarking

Original Flow Watermarked Flow (b) embedding of watermark bit `1'

watermark embedding

- Packet correlation
- ML-based flow correlation
- RTT-based
- Anomaly-detection

1

Evaluation data

Connection pairs from S_N

• 1,400 packets

	Label	#conn	purpose	
SS data	BA	30,000	Baseline attack	
	DA	30,000	Delays with varying $d_{\rm D}$	
	CA	30,000	Chaff with varying $d_{\rm C}$	
	CL	4,000	Varying chain length	
Background data	CAIDA	60.000	General background	
	SSH	20.000	Similar to attack commands	
	Multim.	20.000	Similar to chaff pert.	

